
 JNIOR USERS MANUAL

 JANOS Help System

 16 Feb 2024

 Website : integpg.com

 JANOS Version : v2.4.2

 Help Revision : 16 Feb 2024 19:33

 Includes : JBakup, FtpClient

 JANOS - JNIOR Automation Network Operating System
 CopyRight (C) 2012-2023 INTEG Process Group, Gibsonia PA USA

 TABLE OF CONTENTS

Formalities ... 1
 Trademarks .. 1
 Licensing ... 2
 Limited Warranty .. 3

Getting Help .. 6
 Help System (HELP) .. 6
 Command Line Help 6
 WebUI Help Access 7
 Technical Support ... 8

Getting Started ... 9
 Power UP .. 9
 User Interface ... 10
 Network Access ... 10
 Serial Access .. 11
 Networking Basics .. 12
 IP Settings .. 13
 Time Synchronization (NTP) 17
 Setup Summary .. 17
 Factory Configuration .. 18
 Firmware ... 18
 Files .. 19
 Factory Reset .. 22

Security ... 24
 Overview ... 24
 Default Accounts ... 24
 Encrypted Communications 26

User Commands .. 28
 Command Line ... 28
 Command Entry .. 28
 TAB Auto-Complete Feature 29
 Advanced Usage ... 30
 Console Prompt ... 33
 Current Working Directory (CD) 33
 Command Line History (HIST) 34
 Exiting a Console Session (QUIT) 35
 Configuration .. 36
 Setting Date and Time (DATE) 36
 Network Addresses (IPCONFIG) 38
 Setting the Hostname (HOSTNAME) 40
 Registry Settings (REG) 41
 File Management .. 44
 Listing Files (DIR/LS) 45
 Removing Files (RM) 47
 Copying Files (CP) 48
 Moving Files (MV) 49
 Renaming Files (REN) 50
 Creating a Directory/Folder (MD) 50

 TABLE OF CONTENTS (cont'd)

 Removing a Directory/Folder (RD) 51
 Library Manager (ARC/JAR/ZIP) 52
 Modifying Permissions (CHMOD) 54
 Changing Ownership (CHOWN) 55
 Command Line Tools ... 56
 Displaying Text Files (CAT/TYPE/HEAD/TAIL) 56
 Searching File Content (GREP/FIND) 58
 Locally Editing Text Files (ED) 60
 Issuing an Email (SENDMAIL) 62
 Making a Log Entry (LOGGER) 64
 Accessing Peers (TELNET) 65
 Update File Timestamp (TOUCH) 66
 Batch Scripting and Program Execution 67
 Executing an Application (JAVA) 67
 Executing Scripts and Batch files (RUN/EXEC) 68
 Process Environment (SET) 70
 Batch File Comments (REM) 70
 Batch Mode Text Display (ECHO) 71
 Process Management ... 72
 Displaying Activity (PS) 72
 Detailed Application Status (THD) 73
 Stopping an Application (KILL) 74
 Non-Volatile Memory Blocks (NV) 75
 Garbage Collection (GC) 75
 JNIOR Digital and Analog I/O 77
 Managing External Modules (EXTERN) 77
 Logging (IOLOG) .. 78
 Locally Controlling I/O (JRMON) 79
 Serial Port Extensions (MODE) 82
 User Accounts .. 83
 Listing Users (USERS) 83
 Setting Passwords (PASSWD) 84
 Modifying Permissions (USERMOD) 85
 Adding Accounts (USERADD) 86
 Removing Accounts (USERDEL) 87
 Displaying User Groups (GROUPS) 87
 Adding a User Group (GROUPADD) 87
 Removing a User Group (GROUPDEL) 88
 Modifying a User Group (CHGRP) 88
 Current User (WHOAMI) 89
 Network Utilities .. 89
 Network Status (NETSTAT) 89
 Network Packet Capture 89
 SSL/TLS Certificates (CERTMGR) 93
 Testing Connectivity (PING) 95
 Address Resolution Protocol (ARP) 96
 IP Address Scanner (ARP -S) 96
 Domain Name Services (NSLOOKUP) 97
 NetBIOS Status (NBTSTAT) 97
 System Maintenance ... 98
 Rebooting (REBOOT) 98
 System Statistics (STATS) 98

 TABLE OF CONTENTS (cont'd)

 File Monitoring (MANIFEST) 99
 Performing Updates (JRUPDATE) 101
 Remote Support (PHOME) 103
 Flash File System (JRFLASH) 104

Registry .. 105
 Overview .. 105
 Using the Registry .. 106

System Configuration .. 107
 Built-in Dynamic Keys ... 107
 System Boot Time ($BootTime) 107
 JNIOR Model ($Model) 107
 Serial Number ($SerialNumber) 107
 JANOS Version ($Version) 107
 Last Time Sync ($LastNtpSuccess) 108
 JANOS Build Identifier ($BuildTag) 108
 Hardware Configuration ($HdwStrapping) 108
 Device Keys (Device/) ... 109
 Description (../Desc) 109
 Timezone (../Timezone) 109
 Jumper Reset Action (../ResetAction) 109

Network Configuration ... 110
 Dynamic Host Configuration (IpConfig/DHCP) 110
 IP Address Assignment (IpConfig/IPAddress) 110
 Subnet Mask (IpConfig/SubnetMask) 111
 Gateway IP Address (IpConfig/GatewayIP) 111
 Primary DNS Address (IpConfig/PrimaryDNS) 112
 Secondary DNS Address (IpConfig/SecondaryDNS) 112
 HostName (IpConfig/HostName) 113
 Domain Name (IpConfig/Domain) 113
 Email Host Address (IpConfig/MailHost) 114
 Email Account Username (IpConfig/Username) 114
 Email Account Password (IpConfig/Password) 114
 Account Email Address (IpConfig/EmailAddress) 115
 DNS Timeout (IpConfig/DNSTimeout) 115
 Time Server Address (IpConfig/NTPServer) 115
 Time Sync Period (IpConfig/NTPUpdate) 116
 Maximum Packet (IpConfig/MTU) 117
 Time To Live (IpConfig/TTL) 117
 Syslog Server (IpConfig/SyslogServer) 118
 Connection Keepalive (IpConfig/Keepalive/) 119
 Initial Probe (../Time) 119
 Retry Delay (../Interval) 119
 Retries (../Retry) 119
 Socket Timeout (IpConfig/Socket/ConnectTimeout) 120
 Network Capture Buffer (IpConfig/CaptureBuffer) 120
 Capturing All Traffic (IpConfig/Promiscuous) 121
 Capture Filtering (IpConfig/CaptureFilter) 122
 Bad Credential Reveal (IpConfig/ShowPass) 123
 Multicast Name Resolution (IpConfig/LLMNR) 123

 TABLE OF CONTENTS (cont'd)

 NetBIOS Name Resolution (IpConfig/NetBIOS) 124
 Ip Address Filtering (IpConfig/Allow) 125

Secure Communications Using SSL/TLS 125
 Enabling/Disabling (SSL/Enabled) 125
 Forcing Secure Connections (SSL/Required) 126
 Basic Authentication .. 126
 Passwords ... 126
 Default Accounts 127
 Warning Message (Users/IgnoreDefault) 128
 RSA Keys .. 129
 SSL Certificates .. 130
 Country (SSL/Cert/C) 130
 State (SSL/Cert/ST) 131
 Organization (SSL/Cert/O) 131
 Organizational Unit (SSL/Cert/OU) 132
 Common Name (SSL/Cert/CN) 132
 Subject Alternate Name (SSL/Cert/SAN) 133
 Email Address (SSL/Cert/E) 133
 Expiration (SSL/Cert/Days) 134
 SHA1 Legacy Use (SSL/Cert/SHA1) 134

Event Management .. 135
 Services (Events/Services) 135
 Startup Events (Events/OnBoot) 135
 Email Notification (Events/OnBoot/Email) 136
 Custom Notification (Events/OnBoot/EmailBlock) 137
 Program Startup (Events/OnBoot/RunEnable) 137
 Alarm Events (Events/OnAlarm) 138
 Counter Limit 1 (Events/OnAlarm1) 138
 Counter Limit 2 (Events/OnAlarm2) 138
 Usage Alarm (Events/OnUsage) 139
 Configuration Change (Events/OnConfig) 139
 Email Notification (Events/OnConfig/Email 139
 Custom Notification (Events/OnConfig/EmailBlock) 140

Email Configuration ... 140
 Custom Email Notifications 140
 Recipient Addresses (Email/ToAddress) 140
 Carbon Copy Recipients (Email/CcAddress) 141
 Blind Carbon Copy (Email/BccAddress) 141
 Subject (Email/Subject) 142
 Message Content (Email/Message) 142
 Message File (Email/MessageFile) 143
 Attaching Files (Email/Attachments) 143
 HTML Formatted Email (Email/HTML) 144
 General Settings .. 145
 SMTP Server Port (Email/Port) 145
 STARTTLS Option (Email/StartTLS) 146
 SMTP Secure Connection (Email/SMTPS) 146
 Delivery Attempts (Email/RetryCount) 147
 Delay Before Retrying (Email/RetryDelay) 147

 TABLE OF CONTENTS (cont'd)

 Signature (Email/Signature) 148

Server Configuration .. 149
 World Wide Web (Web) Server 149
 Enabling/Disabling (WebServer/Server) 149
 Unsecure HTTP Port (WebServer/SSLPort) 149
 Secure HTTPS Port (WebServer/SSLPort) 149
 Web Server Login (WebServer/Login) 150
 Anonymouns Login (WebServer/Anonymous) 150
 Website Folders & Files 151
 Default Home Page (WebServer/Index) 151
 Root Directory (WebServer/Root) 151
 Alternate Search Paths (WebServer/Path) 152
 Folder Redirection (Locators) 153
 Websocket Interface ... 154
 Login Requirement (Websocket/Login) 154
 Anonymous Login (Websocket/Anonymous) 154
 Disabling File Management (Websocket/Files) 155
 Console Access (Websocket/Console) 155
 JANOS Management Protocol (JMP) 156
 Enabling/Disabling (JMPServer/Server) 156
 JMP Server Port (JMPServer/Port) 156
 Login Requirement (JMPServer/Login) 156
 Anonymous Login (JMPServer/Anonymous) 157
 JNIOR Protocol (Deprecated) 158
 Enabling/Disabling (JniorServer/Server) 158
 Protocol Port (JniorServer/Port) 158
 Login Requirement (JniorServer/Login) 158
 Anonymous Login (JniorServer/Anonymous) 159
 Outbound Connection (JniorServer/RemoteIP) 160
 Outbound Destination Port (JniorServer/RemotePort) 160
 File Transfer Protocol (FTP) 161
 Enabling/Disabling (FTP/Server) 161
 Command Port (FTP/Port) 161
 Directory Listing Format (FTP/UnixStyle) 162
 Telnet Server - Console Access 163
 Enabling/Disabling (Telnet/Server) 163
 Assigned Port (Telnet/Port) 163
 BEACON Protocol Service 164
 Enabling/Disabling (Beacon/Enabled) 164
 Announcement (Beacon/Announce) 164
 Persistent Broadcast (Beacon/AutoAnnounce) 165

Input/Output (I/O) Configuration 166
 Digital Inputs (DIN) .. 166
 Overview .. 166
 Inversion ... 168
 Debouncing .. 169
 Latching .. 170
 Logging ... 171
 Enabling/Disabling (IO/Inputs/Log) 172
 Usage Metering .. 172

 TABLE OF CONTENTS (cont'd)

 Counting .. 173
 Alarming .. 173
 Configuration by Input (IO/Inputs/[DIN]/) 174
 Text Descriptions 174
 Inverting Sampled State (../Inversion) 175
 Reported State (../Conditioning) 175
 Debouncing (../Debounce) 176
 Latching .. 176
 Enabling/Disabling (../Latching) 176
 Latching Period (../LatchTime) 177
 Latched State (../LatchState) 177
 Enabling/Disabling Logging (../Log) 177
 Usage Metering (../$HourMeter) 178
 Input State Alarms 179
 Enabling/Disabling (../Alarming) 179
 Alarming State (../Alarm/Inversion) 179
 Email Notification (../Alarm/Email) 180
 Custom Email (../Alarm/EmailBlock) 180
 Flood Prevention (../Alarm/HoldOff) 180
 Counter Settings 181
 Counted State (../CountState) 181
 Reported Units (../Count/Units) 181
 Scaling (../Count/Multiplier) 182
 Sampled Counts (../Count/SampleTime) 182
 Counter Alarms .. 183
 Enabling/Disabling 183
 Events & Email Notification 184
 Usage States & Alarms 185
 Relay Outputs (ROUT) .. 187
 Configuration by Output (IO/Outputs/[ROUT]/) 187
 Text Descriptions 187
 Initial Relay State 188
 Usage Metering (../$HourMeter) 188
 Usage States & Alarms 189
 Logging ... 191

Serial RS-232/RS-485 Ports .. 192
 Overview .. 192
 AUX Serial Port ... 193
 Overview .. 193
 Communications Settings (Baud) 194
 Flow Control .. 195
 RS-485 Communications 196
 COM RS-232 Port ... 196
 Overview .. 196
 Diagnostic Output 197
 Communications Settings (Baud) 197
 Flow Control .. 199

ZIP/JAR Compression ... 200
 Overview .. 200
 Parameters .. 200

 TABLE OF CONTENTS (cont'd)

JANOS Management Protocol (JMP) 202
 Overview .. 202
 Connection .. 202
 Secure Communications ... 205
 Initial Connection .. 206
 Messaging ... 208
 I/O Monitoring .. 210
 Monitor Message 210
 Requesting Status 211
 Control Messages .. 212
 Relay Control ... 212
 Counter and Usage Resets 214
 File System Commands .. 216
 Listing Files ... 216
 Reading and Writing 217
 Managing Files .. 220
 Registry Commands ... 223
 Notifications ... 223
 Listing Keys .. 223
 Reading and Writing 225
 Console Access .. 228
 Creating .. 228
 Data Transfer ... 229
 Terminating ... 230
 Example Session 230
 External Devices .. 232
 Realtime Clock .. 236
 Shutdown/Reboot Notification 236
 System Logging (Syslog) 237
 Auth-Digest Calculation 238

Application Programming ... 239
 Overview .. 239
 Java Virtual Machine (JVM) 239
 Compiling Program Files (JAR) 240

Web Development ... 242
 Overview .. 242
 Default Web Pages (WebUI) 243

Scripting (PHP-like) .. 244
 Overview .. 244
 Script .. 245
 Variables ... 247
 Statements .. 250
 Functions ... 252
 User-Defined .. 252
 Built-In .. 254
 Rendering & Output 254
 String Operations 255
 Array Operations 256

 TABLE OF CONTENTS (cont'd)

 Conversions 257
 Date & Time 258
 File System Functions 259
 JSON Functions 260
 Language Support 261
 Registry Access 261
 System Functions 262
 Regular Expressions (REGEX) 262
 Including Files ... 263
 Error Handling .. 264
 Example: Batch Scripting (CKSUMS) 266

Hardware .. 269
 JNIOR Models .. 269
 Power Supply .. 270
 Relay Outputs ... 271
 Digital Inputs .. 272
 COM Serial Port ... 273
 AUX Serial Port ... 274
 Sensor Port Expansion Bus 276
 Memory Areas .. 277
 /etc (JanosClasses.jar) 277
 /flash .. 277
 /temp ... 277

References .. 278
 Users Manual .. 278
 Timezones ... 278
 System Logs ... 281
 Process Environment ... 283
 Network Filtering ... 284
 SafeMode .. 287
 Regular Expressions (REGEX) 288
 ASCII Table ... 290
 Morse Code .. 291
 Javascript Object Notation (JSON) 292
 JNIOR Protocol .. 292
 VT-100 Terminal Compatibility 293

JBakup Log Archiving Application 296

FTP Client Application .. 297
 Command Line Syntax ... 297
 Interactive Mode Commands 298

INDEX ... 300

Trademarks Legal

 JNIOR

 JNIOR(R) is a Registered Trademark of INTEG Process Group, Inc. This acronym
 stands for the Java Network I/O Resource and is pronounced "Junior". The
 JNIOR is the heart of INTEG Automation and has been available in various models
 since 2005.

 JANOS

 JANOS(R) is a Registered Trademark of INTEG Process Group, Inc. This acronym
 stands for the JNIOR Automation Network Operating System and is pronounced
 "Jan-Us". JANOS is the INTEG developed real-time operating system first
 introduced with the Series 4 JNIOR.

 JANOS was named after Janus who in myth is the god of comings and goings,
 beginnings and endings, passages, gates, transitions and time. All of these
 relating to the role of the JNIOR as a data interface/integrator between
 systems, devices and hardware of all forms.

 INTEG

 INTEG(R) is a Registered Trademark of INTEG Process Group, Inc.

 INTEG Process Group (also known as INTEG) is located in Gibsonia, Pennsylvania
 USA. The company has been developing, manufacturing and supplying automation
 products and software since 1999. These products are in use worldwide in
 markets such as Cinema, Transportation, Manufacturing, Security, Utilities,
 and Recreation.

 Page 1

Licensing Legal

TERMS OF USE

 INTEG grants the end-user or business entity ("Customers") using INTEG products
 full license to employ these products as desired provided that the use is
 completely legal as per any and all applicable laws and regulations. These
 products are not certified for, and therefore not licensed for, use in any
 life safety situation wherein the operation of the product could place any
 person(s) or animal(s) at risk of injury or death.

FIRMWARE LICENSE

 The JANOS operating system ("Firmware") remains the property of INTEG Process
 Group. The operating system code and associated runtime libraries (such as
 JanosClasses.jar) as well as any future updates are licensed for use only
 with INTEG products. INTEG reserves all associated Rights. This Firmware
 is proprietary to INTEG and is protected under Copyright law. Reverse
 Engineering and any use of any portion of the Firmware in any situation
 unrelated to INTEG products is strictly forbidden.

APPLICATIONS

 Applications, developed for the JNIOR and generally made available by INTEG
 to all Customers, are fully licensed for use with any INTEG product.

 Custom applications developed specifically for individual Customers under
 paid contract are thereby property of Customers. INTEG will not distribute
 such applications directly.

 INTEG encourages Customers to develop their own applications and will support
 their efforts.

 Page 2

 JNIOR LIMITED WARRANTY
 ======================

NOTICE TO USERS

 THE JNIOR, A PRODUCT OF INTEG PROCESS GROUP, INC. (“INTEG”), IS A MICROPROCESSOR
 CONTROL DEVICE INTENDED TO BE UTILIZED WITH A CUSTOMER’S NETWORK TO MONITOR
 AND/OR CONTROL DEVICES AND/OR PROCESSES VIA REMOTE LOCATIONS. IN ORDER TO
 PREVENT INJURY TO PERSON OR PROPERTY, IT IS THE SOLE RESPONSIBILITY OF THE
 CUSTOMER TO INCORPORATE IN THE CUSTOMER’S SYSTEM, REDUNDANT PROTECTIVE
 MECHANISMS AND SAFEGUARDS APPROPRIATE FOR THE RISK INVOLVED. CUSTOMER IS
 SOLELY RESPOSIBLE FOR THE PROPER INSTALLATION AND USE OF THE JNIOR.

HARDWARE WARRANTY

 The JNIOR product (“product”) is warranted by INTEG, to the original purchaser,
 to be free of defects in materials and workmanship, under normal use, for a
 period of two (2) years from the date of original purchase. If during the
 warranty period, the product is proven to be defective, INTEG’s sole obligation
 under this express warranty shall be, at INTEG’s option and expense, to replace
 the product or part with a comparable product or part with no charge for parts
 and labor, repair the product or part with no charge for parts and labor, or
 if neither repair nor replacement is reasonably available, INTEG may, in its
 sole discretion, refund to Customer the purchase price paid for the product
 or part. Replacement products or parts may be new or reconditioned. INTEG
 warrants any replaced or repaired product or part for a period of ninety (90)
 days from shipment, or through the end of the original warranty, whichever is
 longer. All products or parts that are replaced become the property of INTEG.
 INTEG shall not be required to install, or be responsible for the costs
 associated with the installation of, the replaced or repaired product or part.

SOFTWARE WARRANTY

 INTEG warrants to Customer that the JNIOR software (“software”) licensed from
 it will perform in substantial conformance to their product specifications for
 a period of two (2) years from the date of original purchase from INTEG. Any
 software upgrades that may be made available by INTEG shall be available to
 Customer via CD, E-Mail, and/or INTEG’s website at integpg.com
 with no charge to Customer during the warranty period. The installation of
 software upgrades shall not extend the warranty period of two (2) years from
 the date of original purchase. INTEG does not provide any warranty for any
 custom application software developed by the Customer or any other third-party
 application software that is licensed to Customer by the third party. In the
 event that the JNIOR software as originally provided to customer, and any
 upgrades that may be made available by INTEG, shall fail to perform in
 substantial conformance to the product’s specifications, then INTEG’s
 sole obligation with respect to this express warranty shall be to refund the
 purchase price paid by Customer for the product. INTEG makes no warranty or
 representation that its software will meet Customer's requirements or will
 work in combination with any hardware or application software added or
 developed by the Customer or provided by third parties, that the operation
 of the software will be uninterrupted or error free, or that all defects in
 the software will be corrected.

 Page 3

 THIS INTEG PRODUCT MAY INCLUDE OR BE BUNDLED WITH THIRD PARTY SOFTWARE, THE
 USE OF WHICH IS GOVERNED BY A SEPARATE END USER LICENSE AGREEMENT. THIS INTEG
 WARRANTY DOES NOT APPLY TO SUCH THIRD PARTY SOFTWARE FOR THE APPLICABLE
 WARRANTY. PLEASE REFER TO THE END USER LICENSE AGREEMENT GOVERNING THE USE
 OF SUCH SOFTWARE OR THE ACCOMPANYING DOCUMENTATION RELATING TO SUCH SOFTWARE.

OBTAINING WARRANTY SERVICE

 Customer must contact INTEG within the applicable warranty period to obtain
 warranty service. Dated proof of original purchase from INTEG will be required.
 In the United States, INTEG may ship a replacement product or part prior to
 receiving the original product or part ("advance exchange"). If advance
 exchange is not available, then the repaired product or part will be shipped
 as soon as reasonably possible, which will be no later than thirty (30) days
 after INTEG receives the original product or part. Repaired or replacement
 products will be shipped to Customer at INTEG’s expense. INTEG shall not be
 required to install, or be responsible for the costs associated with the
 installation of, the replaced or repaired product or part.

 Products or parts shipped by Customer to INTEG must be sent prepaid and
 packaged appropriately for safe shipment, and it is recommended that they be
 insured and sent by a method that provides for tracking of the package. When
 an advance exchange is provided and Customer fails to return the original
 product or part to INTEG within thirty (30) days from the date the replacement
 product or part is shipped to Customer, INTEG will charge Customer the
 then-current published price of such product or part.

WARRANTIES EXCLUSIVE

 IF THIS PRODUCT DOES NOT OPERATE AS WARRANTED ABOVE, CUSTOMER'S SOLE REMEDY
 FOR BREACH OF THAT WARRANTY SHALL BE REPLACEMENT OR REPAIR OF THE PRODUCT OR
 PART OR REFUND OF THE PURCHASE PRICE PAID, AT INTEG’S OPTION. TO THE FULL
 EXTENT ALLOWED BY LAW, THE FOREGOING WARRANTIES AND REMEDIES ARE EXCLUSIVE
 AND ARE IN LIEU OF ALL OTHER WARRANTIES, TERMS, OR CONDITIONS, EXPRESS OR
 IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE,
 INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A
 PARTICULAR PURPOSE, SATISFACTORY QUALITY, CORRESPONDENCE WITH DESCRIPTION AND
 NON-INFRINGEMENT, ALL OF WHICH ARE EXPRESSLY DISCLAIMED. INTEG NEITHER ASSUMES
 NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR IT ANY OTHER LIABILITY IN
 CONNECTION WITH THE SALE, INSTALLATION, MAINTENANCE OR USE OF ITS PRODUCTS.

 INTEG SHALL NOT BE LIABLE UNDER THIS WARRANTY IF ITS TESTING AND EXAMINATION
 DISCLOSE THAT THE ALLEGED DEFECT OR MALFUNCTION IN THE PRODUCT DOES NOT EXIST
 OR WAS CAUSED BY CUSTOMER'S OR ANY THIRD PERSON'S MISUSE, NEGLECT, IMPROPER
 INSTALLATION OR TESTING, UNAUTHORIZED ATTEMPTS TO OPEN, REPAIR, OR MODIFY THE
 PRODUCT, OR ANY OTHER CAUSE BEYOND THE RANGE OF THE INTENDED USE, OR BY
 ACCIDENT, FIRE, LIGHTNING, POWER CUTS OR OUTAGES, OTHER HAZARDS OR ACTS OF
 GOD. THIS WARRANTY DOES NOT COVER PHYSICAL DAMAGE TO THE SURFACE OF THE
 PRODUCT. THIS WARRANTY DOES NOT APPLY WHEN THE MALFUNCTION RESULTS FROM THE
 USE OF THIS PRODUCT IN CONJUNCTION WITH ACCESSORIES, OTHER PRODUCTS, OR
 ANCILLARY OR PERIPHERAL EQUIPMENT AND INTEG DETERMINES THAT THERE IS NO FAULT
 WITH THE PRODUCT ITSELF.

 Page 4

LIMITATION OF LIABILITY

 TO THE FULL EXTENT ALLOWED BY LAW, INTEG ALSO EXCLUDES FOR ITSELF AND ITS
 SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING
 NEGLIGENCE), FOR INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE
 DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS,
 LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN
 CONNECTION WITH THE SALE, INSTALLATION, MAINTENANCE, USE, PERFORMANCE,
 FAILURE OR INTERRUPTION OF THIS PRODUCT, EVEN IF INTEG HAS BEEN ADVISED OF
 THE POSSIBILITY OF SUCH DAMAGES, AND LIMITS ITS LIABILITY TO REPLACEMENT,
 REPAIR, OR REFUND OF THE PURCHASE PRICE PAID, AT INTEG’S OPTION. THIS
 DISCLAIMER OF LIABILITY FOR DAMAGES WILL NOT BE AFFECTED IF ANY REMEDY
 PROVIDED HEREIN SHALL FAIL OF ITS ESSENTIAL PURPOSE.

DISCLAIMER

 Some countries, states, or provinces do not allow the exclusion or limitation
 of implied warranties or the limitation of incidental or consequential damages
 for certain products supplied to consumers, or the limitation of liability for
 personal injury, so the above limitations and exclusions may be limited in
 their application to you. When the implied warranties are not allowed to be
 excluded in their entirety, they will be limited to the duration of the
 applicable written warranty. This warranty gives you specific legal rights,
 which may vary depending on local law.

GOVERNING LAW

 This Limited Warranty shall be governed by the laws of the Commonwealth of
 Pennsylvania, U.S.A., and by the laws of the United States, excluding their
 conflicts of laws principles.

 Page 5

HELP/MAN User Commands

NAME
 help - Help System

ALIASES
 HELP, MAN

SYNOPSIS
 help [OPTIONS] [TOPIC]

DESCRIPTION
 The Help System is designed to make information more readily available
 to users during Command Line Console sessions. The HELP command issued
 without parameters lists the available commands. Help information for any
 of the available commands can then be displayed using the name as the
 TOPIC.

 Additional HELP Topics are available for Registry keys and reference
 information.

 -S
 When a topic is not found HELP displays search results displaying
 topics which contain the TOPIC keyword. By default only a limited
 number of matches are displayed. This option skips the search for
 a specific TOPIC, performs the content search, and shows ALL results.
 Results are listing in order of decreasing relevance.

 -I [CATEGORY]
 Generates an index including all of the available HELP topics. If a
 valid CATEGORY is specified the list is limited to a related subset.

 -C
 List all available categories. Most HELP topics belong to at least one
 category.

 -P
 This option pages the Help response 24 lines at a time. The user
 can page through the information using any keyboard keystroke. This
 eliminates the need to scroll back for reading. A Ctrl-C disables
 the paging for the balance of the text.

 -L
 Displays the brief legacy Help text as is available for commands. The
 option '-?' may be used with most commands to access their short help
 text.

NOTES
 The Topic may contain '*' and '?' wildcards but only matches legacy Help
 text in that case. The command HELP * then can generate a quick reference
 for all commands.

SEE ALSO
 HELP Topics: SUPPORT, MANUAL

 Page 6

HELP WebUI

 The Help System is available through the WebUI.

CONTEXT SENSITIVE HELP
 Context sensitive Help is provided when placing the mouse over any
 configuration setting. The Registry Key related to the setting is displayed
 in the status bar at the bottom of the WebUI display. Pressing F1 or
 clicking on the displayed Registry Key enters the Help System displaying
 information about the key if available in a new browser tab. A search is
 otherwise performed.

 The original Registry Specification document is also supplied with the
 JNIOR and can be reached using the 'Registry Documentation' link located
 under the Registry tab in the WebUI.

HELP SYSTEM
 The Help System itself can be reached using the '[Help Search]' link located
 at the bottom right of the WebUI display. You may enter text for the search
 or leave the search box empty. This opens the Help System under a new browser
 tab showing search results. If the search is blank this displays an exhaustive
 list of available Help Topics. Click on any topic for additional information.

 The Help System header also provides access to a list of all of the Console
 commands. This is a subset of topics. There is also a link specifically for
 Technical Support and the topic provides details on contacting INTEG.

 PRINTABLE MANUAL

 The Help System can generate a Users Manual with content specific
 to the current JNIOR. This not only includes Help information for the
 version of JANOS operating system but also any that is available for
 installed applications. The Users Manual appears in the browser fully
 paginated with a Table of Contents and Index ready for printing. It is
 suggested that this manual be saved as a PDF as opposed to hard copy
 printing. It is a useful reference and helpful in exploring the JNIOR.

 SEARCHING

 A Search link opens a small dialog requesting a search term to be used in
 performing a simple scan of Help Topics. The topics correlating to the term
 are displayed in decreasing relevance along with the collection of words
 surrounding the located search terms. The entire set of matched topics can
 be displayed from the command line using the HELP -S search command.

 Matching topics are scored and displayed in decreasing score. While the
 score itself is abstract you can display it. Define a Help/ShowScore
 Registry key setting it to "true". This will include the scores with the
 results.

 Searches, especially when searching for a very common term, can take several
 seconds to complete.

SEE ALSO
 HELP Topics: USERS_MANUAL, HELP

 Page 7

SUPPORT
 For technical assistance:

 1. Check the Knowledge Base at jnior.com
 2. Email: support@integpg.com

 Monday-Friday 8AM-4PM EST
 3. Enter Chat at integpg.com
 4. Call +1 724-933-9350

PRINTABLE MANUAL
 A printable manual containing all of the information available here may be
 generated using the JANOS WebUI. The content is dependent on the current
 version of JANOS and will uniquely include any Help information supplied
 by installed application programs.

 It is recommended that this be saved as a PDF in preference to printing.
 Links within the document should then be usable for navigation. It can
 take a minute to generate this Users Manual.

NOTES
 We recommend that you update to the latest version of JANOS to insure that
 you are not experiencing a known and corrected issue.

 To save time you can include a snapshot taken with the Support Tool with
 your communications.

 jnior.com and integpg.com are presently the same destination.

SEE ALSO
 HELP Topics: HELP, MANUAL

 Page 8

Power Up Getting Started

GETTING UP AND RUNNING
 To get started with a JNIOR you will need a power supply or some source of
 power. In many cases the JNIOR ships in bulk to integrators and power
 supplies are obtained separately since they depend on the destination country.
 That often means that you might be handed a JNIOR without a power supply. Any
 roughly 12 VDC source capable of supplying at least 1 AMP will work.

 Power supplies for the JNIOR may be supplied with the 4-position screw terminal
 connector. More recently the power supplies are equipped with a 2.1MM I.D.
 5.5MM O.D center positive barrel connector. A short adapter accepting the barrel
 connector provides the 4-position connection for the JNIOR. In addition there
 are four 8-position connectors provided.

 If the barrel adapter is not available you can cut the barrel connector off
 a suitable supply, strip and tin the wires as needed. See PWR for wiring
 details.

 With power applied to the JNIOR the Blue LED will illuminate. The Orange LED
 illuminates briefly during boot. This orange status LED has many uses and
 may flash at times to indicate activity.

NOTES
 The Series 3 JNIOR used a Green LED to indicate power. The legacy Series 3
 units are not recommended for new applications.

SEE ALSO
 HELP Topics: KEYBOARD, PWR, POWER_SUPPLY

 Page 9

User Interface Getting Started

COMMUNICATING
 In order to configure and program the JNIOR you will need to communicate
 with it. The JNIOR has no keyboard or display interface. There are ways to
 interact with the unit both serially and through the network.

NETWORK ACCESS
 In order to fully interact with the JNIOR and use its WebUI you must properly
 configure the unit to operate on the network. JNIORs are now being shipped
 from the factory with Dynamic Host Configuration Protocol (DHCP) enabled. With
 a network supporting DHCP the JNIOR will obtain a valid IP address and
 automatically configure itself properly for the network. You will still
 need to determine the IP address that it has been assigned.

 One unique method uses the orange status LED. If you know the first 3 octets
 of the IP addressing used by the network you can determine the forth octet and
 therefore the full IP address assigned to the JNIOR. Connect the JNIOR to the
 network and power it up. After a couple of minutes disconnect the network
 connection leaving the unit powered. The status LED will flash the digits of
 the last octet in Morse Code! See the MORSE_CODE reference for the digit
 patterns.

 You can download the JNIOR Support Tool from the Downloads area under
 Support on the website jnior.com . The Support Tool uses the Beacon
 Protocol to communicate with JNIORs on the local network segment. The active
 JNIORs on the network are listed under the Beacon tab. This protocol does not
 require that the JNIOR have a valid network configuration. A JNIOR even if
 configured for a foreign network will appear in the list. You can right-click
 on a JNIOR and select Configure and IP Configuration to establish settings.

 Once the IP Address of a JNIOR (properly configured for the network) is known
 you may enter the following URL in a browser to activate the Dynamic
 Configuration Pages WebUI.

 http://[IP Address]

 The WebUI is distributed as the file /flash/www/config.zip and the default
 setting of the Registry Key /WebServer/Path is /flash/www/config . This
 allows the simple use of the IP address (or hostname) in the URL to locate
 the supplied WebUI.

 If the JNIOR has been previously configured to support a custom Website you
 may bypass that site and reach the WebUI with the following URL.

 http://[IP Address]/config

 The JNIOR supports the HTTPS:// secure protocol as well.

 Page 10

SERIAL ACCESS
 In the absence of a network connection you can reach the Command Line
 Interface (CLI) or Console through the COM serial port. A USB-to-Serial
 adapter may be used as PCs these days do not provide serial ports. The
 communications parameters are 115,200 Baud, 8 Data Bits, 1 Stop Bit and No
 Parity.

 The IPCONFIG command at the command line can be used to determine and
 alter the IP configuration of the JNIOR. This command may be necessary in
 establishing proper network addressing if DHCP or the Support Tool cannot
 be used. For example: The JNIOR may be connected to the network using a
 cellular modem or other wireless approach not supporting the broadcast
 required by the Beacon protocol.

 The CLI is quite powerful in many ways and not just for configuration although,
 the network is still required for transferring files either on to, or off of,
 the device.

NOTES
 A network cable can often be used to connect the JNIOR directly to a PC.
 The Support Tool running on the PC will locate the JNIOR and allow
 you to configure the unit.

 The Telnet application built in to the Support Tool can be used for serial
 communications. After opening the Telnet tool the Connect button at the
 bottom offers the serial option.

SEE ALSO
 HELP Topics: MORSE_CODE, BEACON, NETWORK, COM_SERIAL, IPCONFIG

 Page 11

Basics Networking

NETWORKING
 A JNIOR must be properly configured to participate reliably on the local
 network. Network configuration can be quite complex and a great deal
 of planning often goes into the structuring of commercial networks. While
 the IT Department or appropriate networking professionals should be
 consulted when adding devices like the JNIOR to a network, some relatively
 simple concepts are all that are needed to get the JNIOR up and running.

 The JNIOR is a wired network device. While WiFi and Cellular adapters are
 available to provide the JNIOR with such connectivity, the device is typically
 connected to a Network Switch via a CAT5 cable. Any number of computers,
 printers and devices connected to a network switch or multiple switches
 constitutes a Local Area Network or LAN. The connected devices can all
 message one another.

 A Wireless Access Point provides wireless connectivity and is at some
 overly simplified level just a big multi-port network switch in the sky.
 WiFi extends the wired network and all devices both wired and wireless are
 able to communicate with one another.

 A Wireless Router often serves on the local network side as a network switch
 with wireless access. The router has another connection allowing it to be
 connected to another network which is often referred to as the Wide Area
 Network or WAN.

ETHERNET MAC ADDRESS
 Just as when someone wishes to send you a letter they need your postal
 address or when they send you an email they need your email address, a
 machine on the LAN can send another a message if it knows its Media Access
 Control or MAC address. This is an address like 9c:8d:1a:00:07:f9 and is
 something that thankfully you never really need to know.

 On the wire that MAC address is absolutely necessary to get packets of
 information from one place to another. Of importance is that every device
 manufactured should have a unique MAC address permanently programmed. Each
 JNIOR has a unique address and the prefix 9c:8d:1a is assigned to INTEG.
 This can be used to identify all of the Series 4 JNIOR products on a network.

IP ADDRESSING
 As opposed to the MAC address the address that you do need know to communicate
 with devices locally and outside is the Internet Protocol address or
 IP Address. This is an address that looks something like 192.168.2.37 which
 is not all that easy to remember either. Typically the first three numbers
 (or octets) displayed here are consistent for every device on the LAN. Only
 the last octet varies.

 On the network, and very much in the background, there is a procedure for
 finding the MAC address for any destination with an IP address. You need
 not know much more about it.

 While a JNIOR may be assigned any IP address it has but one MAC address. Units
 are labeled with the programmed MAC address and this can also be obtained
 by using the IPCONFIG command in the Command Line Console.

 Page 12

CLIENT vs. SERVER
 When you open your Browser and enter a URL it is typically some text like

 https://jnior.com

 In this case you are a Client and are attempting to connect to a Server
 located at INTEG. Fortunately you do not need to know the IP Address
 209.195.188.92 in order to make the connection.

 You will want to use the browser to access the JNIOR. In this case you
 need to know its IP address because it is a Server . The URL would
 look like:

 http://192.168.2.37

 On some networks you may be able to reach the JNIOR using its hostname. The
 JNIOR also registers its 'Birth Name' which is comprised of its numeric
 serial number with a 'jr' 2-character prefix. For example these two URLs
 can both reach the same JNIOR.

 http://bruce_dev
 http://jr615010258

 By default the hostname is initially the birth name. This can be altered using
 the HOSTNAME command. The ability to reach a JNIOR using these names is
 dependent upon the network configuration for name resolution. This may or
 may not work depending on your network's capabilities.

 The serial number for the JNIOR can be located on the rear label.

IP SETTINGS
 To properly configure the JNIOR for the network there are 2 critical IP
 settings and 3 fairly important settings. These are as follows:

 1. IP Address 192.168.2.37
 2. Subnet Mask 255.255.255.0
 3. Gateway Address 192.168.2.1
 4. Primary DNS 8.8.8.8
 5. Secondary DNS 8.8.4.4

 If you are uncertain as to the proper settings for your network you may
 try the Dynamic Host Conbfiguration Protocol (DHCP). Most routers enable
 this protocol. This helps computers join the network and properly configure.
 The JNIOR now ships with DHCP enabled.

 DHCP can be enabled from the command line with the following command:

 ipconfig -d

 In the Support Tool it is a selection. Right-click on the JNIOR in the
 Beacon tab and select Configure and then IP Configuration . There is a
 selection to enable DHCP. After a minute if DHCP is available the JNIOR
 will acquired a valid network setup.

 Page 13

 You can then check the IP configuration through the Support Tool or by
 using IPCONFIG. This will give you items 2 thru 5 in the above list. DHCP
 IP addresses themselves are leased . While it is likely that the JNIOR will
 retain the assigned IP address for some time, that address is assigned from
 a pool (range of addresses) and can change. Since you need the IP address to
 communicate with the JNIOR you don't need it to be a moving target.

 The solution is then to disable DHCP and assign a fixed IP address which
 should be outside of the DHCP range. You will need to get that address from
 your network administrator. In a pinch you can use the ARP -S command to
 locate a low-numbered unused address. The ARP command scans the network and
 reports any addresses that actively respond.

 You can then disable DHCP again using the Support Tool or with the following
 command:

 ipconfig -r

 The JNIOR may retain the DHCP configuration. It is important to reassign the
 IPv4 address outside of the DHCP range either using the Support Tool or
 command. For example:

 ipconfig -a 192.168.2.37

SUBNET MASK
 It was mentioned that the first 3 numbers or octets of IP addresses on the
 local network typically all match. The local network must use only a small
 range of all possible IP addresses as those outside of the range are then
 used to access hosts and devices all over the world. The local address scheme
 uses an address range typically reserved for individual local networks.

 The Subnet Mask defines the portion of the IP address that must match that
 assigned to the JNIOR for any local network participant. This is a bit mask
 specifying bit by bit from the left (most-significant bit) the bits that
 must match between source IP address (the JNIOR) and destination. So with a
 typical local network a subnet mask of 255.255.255.0 indicates that all of
 the bits in the first 3 octets must match for local communications. With 8
 bits per octet (byte) there are 24 bits from the left that must match.
 You may also see the IP address specified as for example 192.168.2.37/24 .

 When the destination address DOES NOT match in every indicated bit position
 the destination is assumed to be outside of the local network. The source
 then attempts to contact the destination using the Gateway device. The
 gateway then potentially providing access to the Wide Area Network and
 hopefully the host destination.

 The Subnet Mask can be set using the Support Tool or using IPCONFG. In
 these command examples the latter sets both the IP Address and Subnet Mask
 in one step.

 ipconfig -s 255.255.255.0
 ipconfig -a 192.168.2.37/24

 If you erroneously set the Subnet Mask, communications may fail to reach some
 members of the local network or some external hosts. This may depend on the

 Page 14

 operation of the gateway which might optionally assist in properly locating
 the destination as still being on the local network. Basically, the subnet
 mask typically is set identically for all members of the local network. More
 complex network topologies are possible. It is best to consult your network
 administrator.

GATEWAY
 The Gateway is a device on the local network that also is a member of
 another network. The latter being presumably connected to the Wide Area
 Network and ultimately possibly the Internet. The Gateway then is likely the
 router for the local network. It serves as a bridge to the outside world.

 If a Gateway address is not properly defined the JNIOR will not be able to
 contact hosts outside of the local network. In a typical automation scenario
 it may not seem that the JNIOR would have any reason to communication outside
 of the local network. The JNIOR periodically reaches out to a NTP server in
 order to synchronize its clock. This occurs about every 4 hours and relies on
 proper Gateway settings and DNS.

 The JNIOR can also be configured to send email notifications. For this to be
 possible the unit also needs to access the outside world. It is important to
 properly define the Gateway IP address.

DNS SETTINGS
 The Domain Name System is a huge distributed database spread across the
 Internet. Its basic function is to translate a domain name like those you use
 in URLs to IP addresses. You use a DNS server to convert the website

jnior.com to the INTEG IP address 209.195.188.92 so that behind the scenes
 your computer can communicate with the company's server and the browser can
 render the website.

 While the JNIOR does not have its own browser it is configured with domain
 names that it will need to convert to IP addresses from time to time. In
 particular the JNIOR synchronizes its clock with an external NTP Server. The
 NTP server is located by first requesting an IP address from a DNS server for
 the domain:

 pool.ntp.org

 There are other NTP services that you can use. This one selects from a large
 pool of available NTP servers and offers an IP address for one that can best
 service your location. With a DNS server properly specified the DATE command
 can reach out and synchronize. For example:

 bruce_dev /> date -n
 Requesting time sync from pool.ntp.org (195.33.242.132)
 Clock synchronized by NTP
 Wed Jul 28 11:28:51 EDT 2021

 bruce_dev />

 Note here that pool.ntp.org has been resolved to the address 195.33.242.132
 and that the JNIOR successfully synchronized its clock.

 Page 15

 There are two DNS addresses, a Primary and a Secondary . A DNS server may
 get too busy to respond or may be down for service. It is critical to have a
 backup. We specify a primary and a secondary DNS server address in hopes that
 at least one of the two is available to help us. The JNIOR may try the primary
 first and if there is no timely response attempt to use the secondary. It may
 also just ask both and take the first response and run with it.

 Page 16

 The NSLOOKUP command can be used to resolve domains. For example:

 bruce_dev /> nslookup jnior.com

 Issuing DNS request (<0.1s)
 Inet Addr Domain
 209.195.188.92 jnior.com

 bruce_dev />

 If DNS addresses are not defined or if the DNS Servers cannot be reached
 the JNIOR clock will likely drift away from the correct time. This may only
 affect the timestamps that appear in logs. If the application is performing
 tasks on a schedule those events may not occur on time. Email notifications
 if configured will not be deliverable. You might use the Google public DNS
 addresses 8.8.8.8 and 8.8.4.4 although there are many other servers
 available.

NTP TIME SYNC
 The JNIOR clock is set at the factory and is likely to drift many seconds or
 even minutes by the time the unit is in your hands. While you can set the time
 and date using the DATE command it is preferred that a NTP server be used
 for automatic time synchronization.

 With proper IP configuration and access to the Internet the JNIOR will obtain
 the current time immediately after boot and then by default every 4 hours. If
 the JNIOR is operating in a sandboxed network or otherwise restricted by
 firewall it is recommended that the IpConfig/NTPServer registry key be
 defined with a local NTP time source.

 Additionally the JNIOR uses the NTP synchronization to calibrate both the
 hardware and software clocks (JANOS v2.4 and later). This calibration occurs
 during the first few days of operation assuming access to the NTP server.

SUMMARY
 For proper network use the JNIOR needs 1) a unique IP Address valid for the
 local network; 2) A proper Subnet Mask for the local network; 3) A Gateway
 IP Address for access to the outside world; And, 4) at least one valid DNS
 server address. DHCP can be a valuable tool for discovering settings for all
 but the IP address itself. Finally, the IP Address must be uniquely defined
 for each device on the network. The JNIOR will query for conflicts during
 boot. If the IP address assigned to the JNIOR is claimed by another device on
 the network the JNIOR will not be available. In this case it will report an
 IP Address of 0.0.0.0 and will remain accessible through the Support Tool
 for reconfiguration.

SEE ALSO
 HELP Topics: IPCONFIG, ARP, NSLOOKUP, DATE

 Page 17

Factory Configuration

FIRMWARE
 The Firmware consists of the JANOS operating system and Java Runtime
 Library. These are programmed at the factory into a Read-Only Memory (ROM)
 area within the processor itself. This is sufficient to bring the JNIOR to
 life. Any further configuration for any specific purpose is achieved by
 loading files, some containing application programs (JAR files), into the
 File System.

 The ROM can contain two separate copies of the operating system. The update
 process is managed by the JRUPDATE command. INTEG supplies an updated
 version of JANOS in an update file (UPD extension). The JRUPDATE command
 takes the UPD file and transfers the new version of the operating system
 into the second area and signals the availability of the update. On reboot
 the system, in an absolutely fault tolerant way, swaps the two JANOS images
 installing the updated version.

 The UPD file also contains an updated version of the Java Runtime Library
JanosClasses.jar that is accessible in the /etc folder. The JRUPDATE

 command immediately updates the runtime library image. There is a very
 slight risk that an updated runtime library might not be compatible with
 the running version of JANOS. An immediate reboot is recommended to insure
 that the new version of the operating system, which would be compatible with
 the runtime, comes on-line. Any incompatibility would simply generate an
 Exception during application execution. This would only be a temporary
 condition.

NOTES
 The update file (UPD) is generally about 1MB in size. This should be
 transferred into the /temp temporary folder before executing the JRUPDATE
 command. The only other area in the file system that can accommodate a file
 of this size is the /flash folder and its sub-folders. Attempting to place
 this large file anywhere else in the file system could cause the unit to
 run out of memory and potentially lose data. This should, however, be a
 recoverable situation.

 If you are running an Update Project such as an All-In-One using the
 Support Tool, this update process is handled for you.

SEE ALSO
 HELP Topics: JRUPDATE, FLASH, TEMP

 Page 18

Factory Configuration

FILES
 In production a number of files are initially loaded onto the JNIOR and
 specifically into the /flash file area. The file system in general is
 stored within a battery-backed Static Random Access Memory (SRAM). There
 are two exceptions to this. One is the /flash folder and all of its contents.
 This information is stored within a Flash Memory component. This is not
 dependent on the battery and therefore considered a bit more permanent. The
 other exception is the /temp area which is temporary and therefore stored
 in the larger general-purpose Heap memory. There is also the /etc folder
 which is read-only and contains the runtime. It is actually in processor ROM.

 On a JNIOR you may observe files with the DIR or LS command. The files that
 you find outside of the /flash folder are actually generated by the JNIOR.
 These are typically log files. The /flash folder is pre-loaded in production
 and may contain the following files:

 /flash/cksums.bat

 This is a batch program that creates a CKSUMS command for use at the
 command line. This reports checksum and digest calculations for
 the content of files. This is useful in validating content against the
 published checksum or digest information calculated from the original
 files.

 This is a good example of how to create a custom command using the
 PHP-like scripting language that is unique to JANOS.

 /flash/ftp.jar

 The JNIOR supports a built-in File Transfer Protocol (FTP) server
 allowing you to upload and download files from the unit using FTP from
 a PC for instance. The ftp.jar application program allows you to use

FTP from the command line as a client. Using this command on the JNIOR
 you can go to remote FTP servers and get or put files. This might be
 useful in pulling (or pushing) a file from one JNIOR to another.

 /flash/JBakup.jar

 The JBakup utility extends logging for periods much longer than can be
 accommodated by the standard .LOG file and its .LOG.BAK backup. This
 program can be run in the background and on the quarter hour it will
 detect newly updated .LOG.BAK files and combine their content into a
 compressed library stored in the /flash/baks folder. Depending on activity
 levels this could preserve log data for many months.

 /flash/jnior.ini

 This is generated by the JNIOR once it is up and running. The jnior.ini
 file is a backup for the Registry . In general one should not edit or
 overwrite this file.

 Page 19

 /flash/manifest.json

 The MANIFEST -U command creates a reference point for the file system.
 This essentially is a database of checksum/digest information for all
 of the files. In production a target version of this file is uploaded
 and MANIFEST is used to verify the file set. This detects any missing
 files or any upload errors even if only a single bit is in error. It is
 employed initially as a quality control function.

 /flash/manpages.zip

 This contains the extended Help information available with the HELP
 command. Its content is what generates this book.

 /flash/ModbusServer.jar

 MODBUS is a protocol that may be used to communicate with the JNIOR.
 If needed this protocol can be enabled through the WebUI on the
 Configuration tab Applications page. It can also be started by setting
 a Registry /Run key.

 /flash/SerialControl.jar

 Serial Control Plus runs on the JNIOR and allows the user to interact with
 the JNIOR I/O via the serial port or the Ethernet port using simple
 ASCII commands. The user can control the relay outputs (on, off, pulse)
 and receive the status of the digital inputs and relay outputs (on, off)
 along with counters via the serial port or Ethernet port. The application
 is enabled using the WebUI on the Configuration tab Applications page.

 /flash/SerialEthernet.jar

 Serial-to-Ethernet acts as a converter between a Serial device connected
 to the JNIOR and a remote application communicating with the JNIOR. The
 connection made using Serial-to-Ethernet is bi-directional allowing
 information to travel both ways. The application is enabled using the
 WebUI on the Configuration tab Applications page.

 /flash/SlaveService.jar

 The Slaving service when running can be configured to cause an input or
 output on one JNIOR to reflect the input or output on another. This can
 be used to extend a remote signal through the network. The application
 is enabled using the WebUI on the Configuration tab Applications page.

 /flash/SNMP.jar

 The Simple Network Management Protocol (SNMP) can be enabled through the
 WebUI on the Configuration tab Applications page. SNMP can be used to
 manage the JNIOR remotely. Variables can be defined which will be monitored
 or controlled in a manner consistent with other SNMP enabled devices.

 Page 20

 /flash/www/config.zip

 This contains the entire WebUI (default JNIOR website) which is served
 directly from this one file. This forms a virtual /config folder for
 the WebServer.

 /flash/www/Bundled.zip

 This contains the configuration pages for the Slaving application and as
 well as that needed by the other applications that may be activated
 on the JNIOR.

 To find out more about these applications and others available for the JNIOR
 visit the INTEG website or contact Technical Support for an overview.

SEE ALSO
 HELP Topics: DIR, CKSUMS, REGISTRY, MANIFEST

 Page 21

Factory Configuration

FACTORY RESET
 A JNIOR may be reset to factory configuration. This involves clearing the
 unit which is an operation referred to as Sanitizing . Once this is done
 an All-In-One update project must be run using the Support Tool in order to
 restore the factory set of files.

SANITIZING
 This procedure clears the JNIOR completely of any prior configuration placing
 the unit in a fresh and blank condition. This performs the following actions:

 1. Shuts down running applications.

 2. Reformats the Flash memory erasing all content.

 3. Resets the Registry removing all content.
 This retains key IpConfig settings so connection with the
 unit is not interrupted. This also retains the Timezone.

 4. Erases User Database resetting to default credentials.
 This retains clock configuration, the POR count, and
 the runtime tally.

 5. Performs a reboot.

 This reset does not revert the operating system to that originally supplied.
 If a particular version is required the proper All-In-One must be used
 containing the desired UPD for the version. We recommend that you use the
 latest All-In-One in this process.

 The command to perform this operation must be run from the Command Line
 and is as follows:

 REBOOT -ERASEALL

 This Sanitization sufficiently removes all user related information as may
 be of security concern. If the JNIOR is employed in a secure Secret or Top
 Secret environment it must be sanitized with this procedure before being
 removed.

RESTORING FILES
 The latest All-In-One Update Project may be run using the Support Tool to
 finally update the JANOS operating system and restore the factory installed
 files. Both the Support Tool and the update projects may be obtained from
 the website at jnior.com .

 Note that in the absence of the Support Tool you can transfer the files
 listed in the Initial_Files section to the unit from another JNIOR or
 backup file.

NOTES
 Do not copy the /flash/jnior.ini file. If you intend to copy Registry
 settings to the unit the Registry import/ingest command REG -I should be
 used. The jnior.ini file is automatically generated and should not be

 Page 22

 edited or overwritten.

SEE ALSO
 HELP Topics: REBOOT, REG

 Page 23

Overview Security

OVERVIEW
 The JNIOR can be used with confidence on the open Internet provided that
 certain security precautions are taken and consistently observed. The
 product configuration as shipped is not appropriate for use in the
 uncontrolled environment. There are default accounts with default login
 credentials which would set you up for disaster. There are protocols, for
 example MODBUS, that do not support login (without customization) and
 therefore cannot be used freely. With care however, the product can exist
 securely in a chaotic world like the Internet.

 Even in a controlled environment such as an air gapped or sandboxed network
 you would still want to control access to the JNIOR. Another trusted person
 with access to the network might in a moment of curiosity accidentally
 activate the JNIOR or alter configuration. Depending on what might be wired
 to the product, randomly closing a relay could damage the connected equipment
 or at a minimum disrupt the normal operation of things. A small accidental
 configuration change might later be difficult to detect and remedy. Both
 cases would be things to avoid. Proper security would limit that risk.

DEFAULT ACCOUNTS
 The JNIOR ships with four (4) default user accounts two of which have full
 Administrator permissions. Leaving just one of these active in an uncontrolled
 situation would create a security risk.

 Eliminate Unneeded User Accounts

 A previously used JNIOR might have several user accounts. A new JNIOR has
 just 4. Those being:

 1. jnior Administrator
 2. admin Administrator
 3. user Control
 4. guest View Only

 The users are configurable by administers through the Command Line Interface (CLI)
 or Console. The USERS command will display the available accounts. Typically
 in a single user situation the 'jnior' account would be the primary. Log
 into the 'jnior' account and then disable the other accounts with using
 the following USERMOD commands:

 usermod +d admin
 usermod +d user
 usermod +d guest

 Similarly you may disable any other accounts that may also exist on the unit
 from any prior use. These commands add the Disabled flag to the accounts but
 do not remove the users. This would allow you to later restore the users if
 necessary.

 You may also remove unnecessary user accounts using the USERDEL command.
 This command allows you to remove more than one user. It does not confirm
 removal so do use this cautiously. You cannot remove the currently active

 Page 24

 user (see WHOAMI). Only an Administrator can make these user changes. So
 you can never remove all of the administrator accounts. There is always
 going to be one. The following command removes the extra accounts:

 userdel admin user guest

 Note that SAFEMODE temporarily reinstates the 'jnior' account with the
 default password. This is important should usernames and/or passwords be
 lost and forgotten.

 Change Default Passwords

 The default user accounts each have a default password consisting of the
 username itself. It is highly recommended that you alter these default
 passwords before putting the JNIOR into service. For each of the remaining
 user accounts you would use the PASSWD command to change the password. This
 command can be used by an Administrator to both change the password for the
 current user and that for any of the other accounts.

 To alter the current account simply enter the command:

 passwd

 You will be prompted for the current password which you must properly
 provide. You will then be asked for a new password and then to reenter the
 password. Both must match for the command to succeed.

 To change the password for any of the other accounts you must supply the
 username as follows:

 passwd admin

 In this case you will not need to enter the current password. You will be
 asked for a new password and then to reenter it. Both must match for the
 command to be successful.

 Passwords on the JNIOR can be as few as 4 characters and as many as 19.
 These may contain any of the printable characters. Account passwords are
 never displayed by the JNIOR. These are stored in secure internal memory
 area.

NOTES
 The command HELP U* will display the syntax for each in the collection of
 user commands.

SEE ALSO
 HELP Topics: HELP, USERS, USERMOD, USERDEL, USERADD, WHOAMI, SAFEMODE, PASSWD

FACTORY_RESET

 Page 25

Encryption Security

SECURE COMMUNICATIONS
 Access to the JNIOR is controlled by login credentials involving a username
 and secret password. This assumes that you have not disabled login for any
 of the services and do not use those protocols that do not support login.
 It is not likely that you would allow someone to watch over your shoulder as
 you enter these credentials and log into your JNIOR even if they were
 trusted. But without some care others may be able to easily and remotely
 observe your login compromising the security of the product. Your username
 and password may be communicated from you to the JNIOR in a plain text form.

 Even if no one can monitor network traffic on your closed network the JNIOR
 itself performs network capturing. The NETSTAT command can be used to
 generate a network capture file that can be downloaded and analyzed offline.
 Your plain text user credentials may be evident in this capture file. You can
 eliminate the risk by insuring that all communications are secure and
 encrypted using SSL/TLS.

 Use Secure Access

 By default the JNIOR has SSL enabled. You do need to elect to use the
 encrypted protocols. That means accessing the JNIOR WebUI using the HTTPS://
 URL as opposed to the previously more typical HTTP:// protocol. In using
 the secure protocol you eliminate the ability for a remote observer to not
 only see your login credentials but to know anything about what you are
 doing.

 Browsers can utilize the AUTH DIGEST procedure for transferring login
 credentials even over the plain text HTTP protocol. This does encrypt your
 login credentials specifically and provides some peace of mind. This can
 still be thwarted by a particularly malicious actor and it is not a sound
 alternative to the more secure HTTPS connection.

 FTP

 Beyond the browser interface other protocols are routinely used in managing
 the JNIOR. One would be the File Transfer Protocol (FTP) used to transfer
 files on to and off of the JNIOR. The WebUI provides you with the ability
 to move files to and from the JNIOR under the Folders tab. This securely
 uses the JANOS Management Protocol (JMP) and not FTP. If you generally
 would rely on the WebUI for file management it is recommended that you disable
 FTP with the following command.

 reg FTP/Server = disabled

 The FTP server can also be disabled under the Configuration tab on the FTP
 page by unchecking Server Enabled . In either case you must then reboot
 the unit to change the server status. Note that you can use the NETSTAT
 command to see what services are running. After disabling FTP you can confirm
 that it is no longer listening.

 Page 26

 NOTE
 The Support Tool currently relies on FTP for file transfer.
 If you rely on the Support Tool you should not disable the
 FTP Server.

 The FTP Server does have a secure mode using the STARTTLS command. The remote
 FTP client must be configured to use STARTLS for transfers. In this case
 once an FTP connection is made the STARTTLS FTP command is issued to convert
 the connection to an encrypted channel before the credentials and anything
 else is transferred. This is a configuration setting for whatever FTP client
 or clients that you plan use.

 TELNET

 The Telnet protocol is used for making Command Line Interface (CLI)
 connections. Unfortunately Telnet clients (terminal programs) do not
 support SSL/TLS encryption. This protocol was developed in a time where
 SSH security was in use. The JNIOR does not currently support SSH.

 The JNIOR does support a STARTLS capability similar to that used by FTP. To
 utilize this feature you will need to obtain the client terminal program
 from INTEG.

 You can disable Telnet just as you can FTP using the WebUI or by setting
 the appropriate Registry key. Again the Support Tool does currently rely on
 Telnet and the command connection for many of its procedures.

 JMP PROTOCOL

 The WebUI uses the JMP protocol using the Websocket facility through the same
 ports used by HTTP or HTTPS. If you have achieved a secure connection in
 accessing the WebUI the background JMP connection will also be secure. The
 JMP protocol also supports login. It has been integrated with the WebUI
 sharing the single entry of credentials.

 The JMP Protocol is also available on Port 9220. It also supports the STARTLS
 capability and client programs designed to communicate the JMP protocol
 can take advantage of an encrypted connection.

 JNIOR PROTOCOL

 The JNIOR Protocol is a legacy binary protocol still in use today. It has
 limited capability and can also be elevated to an encrypted connection. It is
 available on Port 9200. This can be disabled as well if it is not required in
 your application.

SEE ALSO
 HELP Topics: NETSTAT

 Page 27

COMMAND ENTRY User Commands

DESCRIPTION
 Once you have successfully logged into the Command Console you will be
 prompted at the command line for a command. A command consists of a
 command name followed by any number of parameters and options each separated
 by a space. The specifics vary from command to command and the HELP command
 can be, well, helpful.

 Under JANOS, options are prefixed by the dash '-' character and are each
 specified by a single character. For example the command LS -L uses the 'L'
 option to provide a long (verbose) format when listing files (the purpose of the

LS command). There are only a couple of exceptions to the single character
 option rule.

 Options may be grouped after the dash prefix or each provided separately with
 their own dash prefix. Generally options may appear in any order and even
 before or after parameters such as file names. If an option is defining an
 optional parameter that parameter MUST follow the option group specifying
 the option. You can experiment to get a feel for the flexibility here.

 While you are at the mercy of the Telnet client used to access the command
 console you can fully edit the line as you enter it. The backspace and delete
 keys are available. As these two keys function slightly differently between
 Windows and Linux based systems you might notice that JANOS will figure out
 the proper usage for you.

 You can use RIGHT and LEFT cursor movement to move throughout the line and
 either insert or overwrite characters. The Insert key (Ins) will toggle
 between insert and over-strike modes. The End key will reposition you after
 the last character in the line. Similarly the HOME key will move you to the
 beginning of the line. The escape key (Esc) can be used to erase any previous
 content on the line should you wish to start over.

 Commands are executed using the ENTER key. Note that you do not need to be
 at the end of a line to ENTER it.

COMMAND HISTORY
 As commands are entered they are recorded in the command history. This history
 is specific to the user account and remains persistent from one command
 session to another. Up to 200 commands are recorded. You view and search this
 list using the HIST command.

 You may scroll through the recent command history using the UP and DOWN
 cursor movement. In this fashion you may locate a previous command and, if
 necessary, edit it before re-executing it.

 Page 28

AUTO-COMPLETION User Commands

DESCRIPTION
 The TAB keystroke on the Command Line has a particular utility. The
 function is context-sensitive depending on the position in the command
 and on the command itself.

 File Completion

 When entering a command that may require a FILESPEC you may start typing
 the file specification and hit the TAB key. The file specification will
 be auto-completed with an existing matching file or folder. You may repeat
 the TAB keystroke and the system will toggle through all matching names.
 This allows you to locate a file or folder with minimal typing.

 Registry Completion

 When entering a REGISTRY or HELP command (including aliases) the auto-
 complete set is enhanced to include existing and system Registry keys.
 This can reduce the amount of typing but also help remind you of the
 proper key to use.

 With the REGISTRY command if you use TAB immediately after the equals '='
 sign the line will be pre-filled with the current value of the Registry
 entry if any. An existing Registry Key can be quickly accessed and brought
 up for editing using the TAB feature.

 Command Completion

 When using the TAB key at the beginning of the command line in starting
 to type a command it will toggle through all of the valid matching
 commands. This is further augmented by any matching commands from the
 existing command history. This can be very helpful in quickly recalling
 a recent command entry.

NOTES
 When in doubt hit TAB. This is THE Series 4 JNIOR feature that makes the
 Series 3 JNIOR even more painful to use.

SEE ALSO
 HELP Topics: HIST, HELP, HISTORY, REG, PROMPT

 Page 29

ADVANCED User Commands

DESCRIPTION
 Beginning with JANOS v2.4 multiple commands may be executed from a single
 command line. While this may seem like a trivial convenience the ability to
 'pipe' the output of one command into another can be very useful. These
 enhancements are intended to make the JANOS command line consistent with
 terminal and command line features in other operating systems.

 Previously there had only been the ability to save the output of any
 command into a file. For example the following would format a JSON file
 and save the result in a text file for later viewing/printing.

 cat -j manifest.json > manifest.txt

 With the recent command extensions the CAT command has been expanded to
 process any number of files in order. In this example you can create a
 single log file stretching back to include even the backup log content.

 cat jniorsys.log.bak jniorsys.log > syslog.log

 And with earlier versions of JANOS the only other command suffix of note was
 the ampersand '&' which instructs that the command be executed in the
 background. This would start the command in another command process and
 return you immediately to the command prompt.

MULTIPLE COMMAND EXECUTION
 The semicolon ';' character can be used to separate two or more individual
 commands entered on the same command line. The utility in this varies but
 often we do execute a couple of commands in sequence and it might be
 simpler for us to enter them now and not have to wait for the first command
 to complete before getting to type the next.

 JANOS now supports conditional command execution using the '&&' (logical AND)
 and '||' (logical OR) syntaxes. These are used to separate individual commands
 as you would with the semicolon ';'.

 The conditional aspect comes from the implied logical function. For an
 AND operation to be TRUE both operands must be TRUE. In the command line
 context a successful command is considered to be TRUE while a failed command
 is FALSE. So with two commands coupled with the '&&' separator if the first
 command fails (FALSE) the whole line is then going to be FALSE and there is
 NO NEED to execute the second command. JANOS won't bother.

 Similarly using the OR operation. With two commands coupled with the '||'
 separator if the first command is successful (TRUE) there is NO NEED to
 execute the second. No matter what happens with the second command the
 command line will be TRUE. So JANOS will not execute the second command.

 Again, the utility of these features is greatly dependent on your creativity.
 There are situations where this can be very useful. They have been implemented
 for the most part to support compatibility with other terminal and command
 line implementations in an effort to support users/programmers who have
 grown accustomed to such things.

 Page 30

PIPING
 The vertical bar '|' character is used to indicate the desire to 'pipe'
 the output of one command into another. Many of the commands that process
 the content of a file now detect and can use as a source the data being passed
 from a previous command. The usefulness in this depends greatly on what you
 need at the time.

 For example you might want to know how many lines there are in the logs. Here
 we will use the GREP command whose -C option reports the number of matched
 lines. On the command line we execute the following command:

 bruce_dev /> cat jniorboot.log.bak jniorboot.log | grep -c
 1285 lines matched

 Here the CAT command combines the full extent of boot logs and we then ask
 the GREP command to count the lines. To find out how many individual reboots
 are contained in the logs we merely take advantage of the GREP search
 string.

 bruce_dev /> cat jniorboot.log* | grep -c POR
 37 lines matched

 TIP
 The CAT command extension that allows use of the
 wildcard specification, combines all matching files
 in order of modification date from oldest to latest.
 In this case combining LOG files exactly as in the
 previous example.

 We have the logs from the past 37 boot events. Here is another example
 command designed to list the last 2 times the clock has been synchronized.

 cat jniorsys.log* | grep NTP | tail 2

 This is a command which harvests the IP addresses of pool.ntp.org NTP servers
 reported in the jniorsys.log file pinging each to get a feeling for their
 response times.

 egrep sync.+(\\d+\\.\\d+\\.\\d+\\.\\d+) jniorsys.log -f "@ping -qc 1 $1" | exec

 This uses EGREP to locate the IP address and format a PING command for each.
 The PING command is to issue one and only one PING for the IP address. The
 piped output then appears like a batch file containing a list of PING commands
 and EXEC goes ahead and executes the batch. Here are some results from this:

 Reply from 207.244.103.95 (22ms)
 Reply from 162.159.200.123 (21ms)
 Reply from 44.190.5.123 (71ms)
 Reply from 65.19.142.137 (73ms)
 Reply from 142.202.190.19 (68ms)
 Reply from 66.151.147.38 (78ms)

 Page 31

 It is important to note that we are not passing data from one command to be
 used as keyboard input to the next. JANOS does not support the ability to
 source keyboard input from a file. For example using '< file' after a command.

SEE ALSO
 HELP Topics: CAT, GREP, TAIL, EGREP, PING, EXEC, REGEX

 Page 32

PROMPT User Commands

DESCRIPTION
 The Command Line prompt contains both the Hostname assigned to the
 JNIOR and the current working directory. Depending on the selection
 of hostname and use of CD to change the working directory the prompt
 can become quite lengthy and crowd the command line.

 The Del Delete Key when used at the beginning of a blank command
 line toggles the inclusion of the hostname in the prompt. This may help
 to shorten the prompt.

SEE ALSO
 HELP Topics: HOSTNAME, CHDIR, TAB

CHDIR/CD User Commands

NAME
 chdir - Change Working Directory

SYNOPSIS
 chdir DIRECTORY

ALIASES
 CHDIR, CD

DESCRIPTION
 Use this command to change the current working directory. Initially the
 working directory is the File System root. The current directory (or
 folder) is displayed in the prompt.

SEE ALSO
 HELP Topics: MKDIR, MD

 Page 33

HISTORY/HIST User Commands

NAME
 history - Command Line History Utility

ALIASES
 HISTORY, HIST

SYNOPSIS
 hist [INDEX]
 hist [SEARCH]

DESCRIPTION
 The Command Console maintains the history of entered commands. This is
 generally accessed using the UP and DOWN cursor arrows. A previous
 command may be recalled, optionally edited, and potentially reissued.

 The command history has been greatly enhanced as many more commands are
 retained and now are carried from console session to console session. These
 histories are unique to the user for obvious security reasons.

 In the absence of INDEX or SEARCH parameters the HISTORY command displays
 an enumerated list of past entries. Beginning with JANOS v2.4 there are up
 to 200 previous command line entries recorded. Their listing is now presented
 from oldest to latest making the new -P option useful in reviewing only the
 most recent usage.

 INDEX
 The numeric INDEX from the history list can be entered to recall the
 related entry to the command line for optional editing and reissue.

 SEARCH
 A SEARCH string may be used to display prior entries containing a match.
 These will be enumerated but if there is only one matching entry it will
 be brought to the command line for immediate use. The SEARCH string may
 contain Regular Expression (REGEX) syntax.

 -P
 Displays the last page of the history list (approximately 23 lines).

NOTES
 The HISTORY listing may be piped to a subsequent command such as GREP/EGREP
 for more sophisticated searches. Or, piped to TAIL for better control of
 the list to be presented.

SEE ALSO
 HELP Topics: REGEX, TAB, PROMPT, GREP, TAIL

 Page 34

BYE/EXIT/QUIT User Commands

NAME
 exit - closes the console session.

ALIASES
 BYE, EXIT, QUIT

DESCRIPTION
 A Console Session is a separate process running on the JNIOR. A session
 can be terminated by closing a connection to the JNIOR. This command can
 be used to explicitly close the session.

 Page 35

DATE User Commands

NAME
 date - displays and adjusts the system time and date.

SYNOPSIS
 date [OPTIONS] [NEWDATE] [TIMEZONE]
 date -n [NTP_SERVER]

DESCRIPTION
 The DATE command without parameters simply displays the current time,
 date and timezone.

 -T
 Displays the current set of available timezones.

 -G
 Displays the current time in UTC.

 -N [NTP_SERVER]
 Requests the current time from the NTP server and updates the
 clock if a response is received. If NTP_SERVER is specified
 it is used in the request and sets the NTP server to be used
 in all subsequent requests.

 -S
 Disables the use of Daylight Saving Time (DST).

 -D
 Enables the use of DST.

 -M
 Includes milliseconds in the displayed time.

 -H
 The system maintains a hardware clock when power is removed. This
 is queried during boot. This option reports the time according to
 the hardware. It also reports any difference between this time and
 the running (software based) system clock.

 -V
 Verbose output. When the time and date are displayed this goes into
 great detail. It describes any active DST rule and the DST status.

 NEWDATE
 This manually set the new time and date. The format is as follows:

 MMDDYYYYHHMMSS
 MM - 2 digit month (01-12)
 DD - 2 digit day (01-31)
 YYYY - 4 digit year (2021)
 HH - 2 digit hour (00-23)
 MM - 2 digit minute (00-59)
 SS - 2 digit second (00-59)

 Page 36

 The entire string is not required. The unspecified portion is assumed
 to be 00. You can optionally append "am" or "pm" however time can best
 be set in 24-hour format.

 TIMEZONE
 Sets the timezone if specified. This is either the standard or DST
 abbreviation for the timezone.

NOTES
 The system clock is updated from an available NTP server upon boot and
 approximately every 4 hours thereafter assuming that the JNIOR has access
 to the Internet.

 A local NTP server may be also defined using the IpConfig/NTPServer Registry
 key. The update period may be controlled through the IpConfig/NTPUpdate
 Registry entry. Beginning with JANOS v2.4 the latter key does not require a
 reboot.

 Also beginning with JANOS v2.4 both the hardware and software clocks handled
 by the operating system are auto-calibrated with each NTP update. This will
 improve the clock accuracy between updates. If the JNIOR is to operate in
 in an off-line situation you might allow the unit to run for a couple of days
 with Internet connection so as to achieve a reasonable calibration before
 being isolated.

 Page 37

IPCONFIG User Commands

NAME
 ipconfig - IP Network Utility

SYNOPSIS
 ipconfig [OPTIONS]

DESCRIPTION
 This command is used to configure network settings. If issued without
 options the current settings are displayed.

 The product is shipped with Dynamic Host Configuration Protocol (DHCP)
 enabled which will allow the JNIOR to properly configure itself for
 most networks. In most applications the JNIOR should be assigned a
 fixed IP address.

 -A IPADDR
 Assign the IP Address IPADDR. The accepted formats are:
 NNN.NNN.NNN.NNN Defining IP address only.
 NNN.NNN.NNN.NNN/BB Defining IP address and BB netmask.
 where:
 NNN is 0-255
 BB is typically 24 (number of 1's in netmask)

 -M NETMASK
 Assigns the subnet mask NETMASK. Often 255.255.255.0 is used. This mask
 (as with IP addresses) specifies 4 bytes. In this example their values
 are 0xFF, 0xFF, 0xFF and 0x00 as 0xFF hex is 255 decimal. In a 32-bit
 system like the JNIOR this is recorded as a word 0xFFFFFF00 with the
 bytes assembled in order. Each byte is 8 bits which are either 0 or 1.
 The byte 0xFF in binary is 11111111 where 0x00 is just 00000000. Note
 there are 24 1's left-justified in the submask word and therefore we might
 use the /24 to specify the IPADDR and the NETMASK simultaneously as
 described above.

 -G IPADDR
 Define the Gateway IP Address. This is required to reach external
 servers as may be needed for DNS name resolution, Network Time
 Protocol (NTP) for clock updates, and sending email notifications.

 -P IPADDR
 Define Primary DNS IP Address.

 -S IPADDR
 Define Secondary DNS IP Address.

 -D
 Enable DHCP configuration (default).

 -R
 Release DHCP leased IP address and disable DHCP.

 -T MILLIS
 Set DNS timeout to MILLIS milliseconds (default 5000).

 Page 38

 -H HOST
 Sets the mailhost. HOST can reference a Domain or Ip Address.

 -F EMAIL
 Defines the Sender's (FROM) email address. This will be validated
 by the Mail Server and must be the user's valid registered email
 address.

 -U USERNAME
 Defines the username for the email account used for sending email.
 Note that in setting the username a password will be automatically
 requested, encrypted and stored securely.

 -X
 Remove/Delete user credentials entered with the -U option. Necessary
 to insure that both the Username and the securely stored password
 are cleared from the unit.

 -L SYSLOG
 Defines a SYSLOG server for external logging. SYSLOG may reference
 a Domain or IP address.

 -N DOMAIN
 Defines the local Domain. By default this is jnior.local and it is
 generally arbitrary.

NOTES
 The NTP time server address is set by the DATE command. The default
 is pool.ntp.org.

 The ARP -S command performs a local IP scan and can be used to verify
 availability of IP addresses.

 The PING -V command can be used to verify communications with the
 configured gateways and servers.

SEE ALSO
 HELP Topics: ARP, DATE, NSLOOKUP, SENDMAIL, LOGGER, PING

 Page 39

HOSTNAME User Commands

NAME
 hostname - Sets system hostname.

SYNOPSIS
 hostname NEWNAME

DESCRIPTION
 By default the system Hostname is the unit's Serial Number with a "JR"
 prefix. The Hostname is displayed as part of the command line prompt.
 The HOSTNAME command sets a new Hostname to NEWNAME.

 Hostnames should be short and descriptive. The Hostname can be used
 in a URL to reference a unit whose IP address might not be known. In
 this case only characters compatible with a fully qualified domain
 name (FQDN) should be used. The Hostname is included in the unit's
 TLS Certificate to assist in establishing secure connections.

 The Hostname is also used in NetBIOS Name Resolution. In this case the
 name should be no more than 15 characters and avoid punctuation. This
 limitation may be required before the Hostname will work in a URL.

SEE ALSO
 HELP Topics: IpConfig/HostName

 Page 40

REGISTRY/REG User Commands

NAME
 reg - Configuration Utility

ALIASES
 REGISTRY, REG

SYNOPSIS
 reg [KEY] [= VALUE]
 reg [KEY]
 reg [OPTIONS] [SEARCH]
 reg [OPTIONS]

DESCRIPTION
 Configuration settings are maintained using a database of Name-Value pairs.
 This is referred to as the Registry. Registry Keys can be created for just
 about any purpose. There is a set of built-in Registry Keys that have
 specific roles in the configuration of the JNIOR.

 Querying a Registry Key or Keys
 reg KEY

 The command REG KEY displays the current VALUE of the key if any has been
 assigned. The KEY parameter may use the '*' and '?' wildcards. Therefore
 the command REG * dumps all assigned Registry Keys.

 Setting a Registry Key
 reg KEY = VALUE

 The REG KEY = VALUE command sets the Registry Key to the VALUE. Registry
 entries contain string values even when numeric settings are required.
 If VALUE contains a space it must be enclosed in double-quotes. When
 entering a KEY striking the TAB key immediately after the equals '='
 will pre-fill the line with the existing VALUE. This may be useful when
 an entry simply needs to be edited.

 Deleting a Registry KEY
 reg KEY =

 Assigning a blank VALUE to a Registry Key removes it from the system. The
 operating system or an application may then choose to use a default VALUE
 for the setting.

 Options

 -D KEY
 The KEY parameter may specify a single KEY or use wildcard characters
 such as '*' and '?' to select a group of keys. Each deletion must be
 confirmed.

 -A
 This option overrides the deletion confirmation. This is the same as
 confirming a deletion with [A]ll and all operations will complete
 without prompting.

 Page 41

 -E
 The SEARCH parameter contains Regular Expression (REGEX) syntax.

 -M
 Displays the last modification timestamp for each Key. This is in the
 form [YYMMDDHHMM] and can be useful in determining when a setting may
 have been made.

 -X
 When listing Keys using a wildcard this option will include unassigned
 known system keys also matching the SEARCH. The command REG -X *
 not only displays all assigned keys but also those system keys that
 are defaulted.

 -B
 Displays keys formatted as another command. This output may be
 redirected to a BAT batch file and later executed to restore
 settings.

 -F FILE
 Exports keys matching SEARCH to the specified file in INI format.
 If SEARCH is omitted the entire Registry is exported with the
 exception of the IpConfig section. This allows the file to be
 moved to another JNIOR and when ingested not damage that unit's
 network configuration.

 -I FILE
 Import (or ingest) the FILE. This file must be in INI format. If the
 FILE is a JAR file then any included AppInfo.INI file is ingested.
 This is the same as Registering the application. Note that this
 creates the keys defined in FILE but does not remove those that are
 not.

 -U FILE
 Uninstall the FILE. This file must be in INI format. All keys referenced
 in the INI file are removed (deleted) from the Registry. If a JAR file
 is specified then the keys referenced by the included AppInfo.INI file
 are removed. This is equivalent to de-registering the application. Use
 the option VERY carefully.

 -S
 Generate Registry Snapshot. The saves the entire Registry to a file
 located in the /flash/registry folder. The file name is in the format
 jnior_YYYYMMDDHHMM.ini and this contains all entries including the
 IpConfig section. This creates a backup save point for the Registry.

NOTES
 Registry Keys are not case-sensitive although when they are defined
 character case is retained to improve readability.

 The TAB key has a specific utility on the Command Line. It is of particular
 use in working with the Registry.

 The /flash/jnior.ini file should not be edited or overwritten. This is
 a backup for the Registry and is not referenced unless the Registry has

 Page 42

 been damaged. Use -I to import Registry content and -F to export content
 for updating other JNIORs.

 Registry changes are logged to the jniorsys.log file.

SEE ALSO
 HELP Topics: TAB, BATCH, INI

 Page 43

FILES User Commands

 The JANOS File System was modeled after Linux in order to maintain some
 familiarity for some users. Also the Linux file permissions are handled
 more logically than in other operating systems.

OWNERSHIP
 Each file or directory has an Owner. This is the user account that created
 the file or directory or 'root' if the system did so. The USERS command
 lists the current users. The CHOWN command can alter the assigned
 ownership as well as the Group.

GROUPS
 A file or directory may be assigned to a Group. A Group is a subset of the
 user accounts that can be given specific access permissions for the file
 or directory. The GROUPS command lists he current Groups. The CHGRP command
 can alter the Group assignment. The 'root' Group includes all users and is
 the default.

PERMISSIONS
 File and directory permissions are displayed as a 10-character string in the
 format:

 drwxrwxrwx

 'd' Is present for directories.
 'r' Indicates that 'read' permission is granted.
 'w' Indicates that 'write' permission is granted.
 'x' Is set for executable files.
 '-' Is displayed otherwise.

 After the first character that describes the entry type there are 3 'rwx'
 sets corresponding to permissions respectively for the Owner, Group and
 then everyone else. The CHMOD command is used to alter file and folder
 permissions.

NOTES
 An Administrator has access to all files and directories regardless of
 the defined permissions. Permission settings are then generally not
 required unless the product is to be accessed by other types of users.

SEE ALSO
 HELP Topics: LS, USERS, GROUPS, CHOWN, CHGRP, CHMOD

 Page 44

DIR/LS User Commands

NAME
 dir - File Directory List Utility

ALIASES
 DIR, LS

SYNOPSIS
 dir [OPTIONS] [FILESPEC]

DESCRIPTION
 Lists files stored in the File System. FILESPEC may define a specific
 file or contain '*' and '?' wildcards.

 -L, -V
 Long or Verbose mode lists file details such as permissions, size
 and last modification date.

 -A
 Lists ALL files including Hidden files. Hidden files and folders have
 names beginning with a period '.' .

 -F
 Lists only Files. Folders or Directorys are not listed.

 -D
 Lists only Directories or Folders. Files are not listed.

 -S, -R
 Recurses sub-directories or sub-folders listing content in each.

 -W
 Lists files in columnar format. Not valid with verbose listings.

 -X
 Includes the '.' file entry (current folder) when used with a
 recursive (-S or -R) verbose (-V) listing.

FORMAT
 The long format (option -L) is interpreted by other systems and protocols
 such as File Transfer Protocol (FTP). It is therefore somewhat cryptic
 and may look foreign to some. A header is not provided as it might be
 misinterpreted in processing. The output appears as follows:

 -rw-r--r-- 1 root root 387 May 27 08:45 jniorsys.log

 -rw-r--r--
 The initial column displays the Permissions for the file or directory.
 It comprises of 10 characters in the format 'drwxrwxrwx'.

 1
 The digit '1' is always listed. JANOS does not support multiple
 hard-links.

 Page 45

 root
 Next the file Owner is listed using the account username or 'root' if
 the file or directory was created by the system. The USERS command
 lists the current users.

 root
 The Group to which the file has been assigned. The GROUPS command lists
 the currently defined Groups. The 'root' group includes all users and
 is always available.

 387
 The file size in bytes. If the listing is a directory (first char in the
 permissions is a 'd') then this is the count of entries in the folder.

 May 27 08:45
 The date of the last file or directory modification. The format may
 change to include the year when the entry is sufficiently old.

 jniorsys.log
 Finally the file or directory name is listed.

SEE ALSO
 HELP Topics: PERMISSIONS, USERS, GROUPS

 Page 46

RM/DEL User Commands

NAME
 rm - Remove File(s)

ALIASES
 RM, DEL

SYNOPSIS
 rm [-A] FILESPEC [FILESPEC]...
 del [-A] FILESPEC [FILESPEC]...

DESCRIPTION
 Deletes the specified file or files. The parameter FILE may contain
 the '*' and '?' wildcard characters.

 If wildcards are used the command will prompt to confirm matching files
 for deletion. The user may reply 'Y' or 'N' to this prompt. A response
 of 'A' will apply the 'Y' reply to this and remaining prompts.

 -A
 Overrides confirmation prompts performing the requested deletions.

 Page 47

COPY/CP User Commands

NAME
 copy - Copies files

ALIASES
 COPY, CP

SYNOPSIS
 copy SOURCE DESTINATION

DESCRIPTION
 Copies one or more files specified by SOURCE to DESTINATION.

 SOURCE may specify files using the wildcards '*' and '?'.

 If SOURCE specifies a single file then DESTINATION can define both a new
 location and name for the file.

 If SOURCE specifies one or more files and DESTINATION is a folder then
 the files are copied into the destination folder.

 If SOURCE specifies a folder then all file content is copied to the
 specified DESTINATION folder. The *.* wildcard is assumed.

 -O
 Overwrite all. If the destination file already exists it will be
 overwritten without confirmation.

 -S, -R
 Includes subfolders in wildcard copies. Note that the folder structure
 is maintained and destination folders will be created if needed.

SEE ALSO
 HELP Topics: MOVE

 Page 48

MOVE/MV User Commands

NAME
 move - Move files.

ALIASES
 MOVE, MV

SYNOPSIS
 move SOURCE DESTINATION

DESCRIPTION
 Moves one or more files specified by SOURCE to DESTINATION. Once a
 successful copy is completed the SOURCE file(s) are removed. The
 files are moved to a new location.

 SOURCE may specify files using the wildcards '*' and '?'.

 If SOURCE specifies a single file then DESTINATION can define both a new
 location and name for the file.

 If SOURCE specifies one or more files and DESTINATION is a folder then
 the files are moved into the destination folder.

 If SOURCE specifies a folder then all file content is moved to the
 specified DESTINATION folder. The *.* wildcard is assumed.

 -O
 Overwrite all. If the destination file already exists it will be
 overwritten without confirmation.

 -S, -R
 Includes subfolders in wildcard actions. Note that the folder structure
 is maintained and destination folders will be created if needed. The
 existing folders from which files are moved are not removed. These will
 remain even if empty. These can be removed then using the RMDIR command.

SEE ALSO
 HELP Topics: COPY, RENAME, RMDIR

 Page 49

RENAME/REN User Commands

NAME
 rename - Rename file

ALIASES
 RENAME, REN

SYNOPSIS
 ren FILE NEWNAME

DESCRIPTION
 This command renames the source FILE to NEWNAME. The FILE must exist and
 the NEWFILE cannot already be present. This command cannot be used to
 move a file. The MOVE command however can rename a file in the process
 of moving it.

SEE ALSO
 HELP Topics: MOVE

MKDIR/MD User Commands

NAME
 mkdir - Create Folder/Directory

ALIASES
 MKDIR, MD

SYNOPSIS
 md FOLDER

DESCRIPTION
 Creates the specified FOLDER.

SEE ALSO
 HELP Topics: RMDIR, LS, DIR

 Page 50

RMDIR/RD User Commands

NAME
 rmdir - Remove Folder/Directory

ALIASES
 RMDIR, RD

SYNOPSIS
 rd [OPTION] FOLDER

DESCRIPTION
 Removes the specified FOLDER. The folder/directory must be empty. The -S
 option can be used to remove a folder along with any existing content.

 -S
 Recursion removes the folder/directory along with any files and
 sub-folders it may contain.

SEE ALSO
 HELP Topics: MKDIR, LS, DIR

 Page 51

ARC/JAR/ZIP User Commands

NAME
 arc - manages content within a compressed library file.

ALIASES
 ARC, JAR, ZIP

SYNOPSIS
 arc [OPTIONS] archive [FILES]

DESCRIPTION
 ARC is a compression and file packaging utility. Files are stored in single
 library usually with the .ZIP or .JAR extension. This is used to compress
 files reducing storage space and to package multiple files in one library
 that can be managed as a single entity.

 -E
 Extract - Extracts uncompressed FILES to their relative path locations.
 To override the destination path use the -P option.

 -A
 Add - Compresses and adds FILES to an archive preserving their relative
 paths. To override the stored paths use the -P option.

 -U
 Update - Compresses and updates FILES in the archive when the new files
 have been more recently modified.

 -F
 Freshen - Scans the archive comparing the last modification dates with
 any matching external files. If an external file has been modified more
 recently it will replace the copy in the archive.

 -M
 Move - Same as -A adding FILES to the archive. Once the archive has been
 successfully modified the added external files are removed. The
 FILES are moved into the archive.

 -D
 Delete - Remove FILES from the archive.

 -L
 List - Display archive content. Use the -V verbose option for greater
 detail.

 -S
 Recurses folders when wildcard file specifications are used.

 -P pathspec
 Overrides the destination path associated with a file. When
 extracting this is affects the destination of the file(s).
 When adding this defines the relative path stored for the file(s).

 Page 52

 -V
 Verbose output. Increases detail.

 -O
 Overwirte when extracting. If an external copy of the file
 would be overwritten the action is confirmed. The -O option
 bypasses the confirmation and overwrites as requested.

 -T
 Test the archive. This decompresses archive content and confirms
 that each file can be successfully extracted. This uses stored CRC
 information.

NOTES
 JAR and ZIP archives are equivalently formatted archive files. The JAR
 file is so named as it generally contains an application program for
 the JNIOR written in Java.

 In some cases a ZIP/JAR library forms a virtual folder with the name of
 the library (without the extension) located at that point in the file system.
 That allows the JANOS Java Virtual Machine, Webserver and Help system to
 access files directly out of archives. Programs and websites each require
 multiple files in order to function properly and an archive file allows those
 to be transferred and managed easily as a group.

 With JANOS 2.4 the CAT command can retrieve and display text content directly
 from a virtual folder formed by an archive file. This can give you easy access
 to the extended log files backed up by the optional JBakup utility.

SEE ALSO
 HELP Topics: JVM, WEBSERVER, CAT, JBAKUP

 Page 53

CHMOD User Commands

NAME
 chmod - Modify Permissions

SYNOPSIS
 chmod [OPTIONS] MODE FILESPEC

DESCRIPTION
 This command alters the permissions for FILESPEC. Wildcards may be used to
 alter a set of files or directories. There are two optional syntax for
 MODE that define how permissions are altered. This is similar to the Linux
 usage.

 Numeric Syntax

 The numeric representation contains 3 digits each specifying the
 permissions for the owner, group and others in that order. Each is
 a bitwise mapping of 'rwx' where: r is 4 (bit 2), w is 2 (bit 1) and
 x is 1 (bit 0). For example:
 --- 0 r-- 4 r-x 5 rw- 6 rwx 7

 And therefore:
 777 -rwxrwxrwx
 644 -rw-r--r--

 Symbolic Syntax

 [ugoa][-+=][rwx][, ...]

 The symbolic approach can be used to conditionally alter permissions.
 Here MODE is a command separated list of actions defined with a
 mnemonic. Where:
 u User or Owner
 g Group
 o Others
 a All (Owner, Group and Others)

 - Remove permissions
 + Add permissions
 = Set permissions

 r Read permission
 w Write permission
 x Execute permission

EXAMPLES
 To set test.bat permissions to -rwxr-xr-x use either syntax:
 chmod 755 test.bat
 chmod u=rwx,go=rx test.bat
 chmod a=rx,u+w test.bat

 To add execute permissions on test.bat for all users. This does not alter
 any previously defined read or write permissions.
 chmod a+x test.bat

 Page 54

OPTIONS

 -S
 When wildcards are used this applies the change recursively through
 sub-directories.

 -D
 Alter permissions on a directory. This option is required when changing
 permissions on one or more directories. This is necessary to signal
 the intent in wildcard and recursive actions.

 -V
 Provides additional detail when changes occur.

SEE ALSO
 HELP Topics: PERMISSIONS, LS

CHOWN User Commands

NAME
 chown - Change Ownership

SYNOPSIS
 chown [OPTIONS] USERNAME FILESPEC
 chown [OPTIONS] USERNAME:GROUP FILESPEC

DESCRIPTION
 This command alters the Ownership of FILESPEC. Wildcards may be used to
 alter a set of files or directories. This sets the new owner to USERNAME.

 If GROUP is supplied the command will change both the Ownership and the
 Group assignment.

 -S
 When wildcards are used this applies the change recursively through
 sub-directories.

 -D
 Alter Ownership of a directory. This option is required when changing
 the ownership on one or more directories. This is necessary to signal
 the intent in wildcard and recursive actions.

 -V
 Provides additional detail when changes occur.

SEE ALSO
 HELP Topics: USERS, GROUPS, CHGRP, FILES

 Page 55

CAT/TYPE/HEAD/TAIL User Commands

NAME
 cat - displays file content.

ALIASES
 CAT, TYPE, HEAD, TAIL

SYNOPSIS
 cat [OPTIONS]... FILESPEC [FILESPEC]...
 type [OPTIONS]... FILESPEC [FILESPEC]...
 head NUM [OPTIONS]... FILESPEC [FILESPEC]...
 tail NUM [OPTIONS]... FILESPEC [FILESPEC]...

DESCRIPTION
 Displays the content of FILESPEC to the standard output.

 -D
 The file content is dumped in standard hex debug format.

 -H NUM
 Displays at most NUM lines from the Head of the output.

 -T NUM
 Displays the last NUM lines or Tail of the output. Note that Tail
 is applied before Head and therefore the two may be used to display
 a range of lines within the output stream.

 -R
 Reverse the order of displayed lines. The Tail becomes the Head.

 -J
 Attempts to display a JSON file in a more readable form.

 -P
 Displays the last page (23 lines) of the file.

 Commands and options are not case-sensitive. Options may appear anywhere
 on the command line and in any order. Options may be combined following
 the dash '-' or separately specified.

EXAMPLES
 cat jniorsys.log -p
 Displays the most recent page of SYSLOG entries.

 type -j manifest.json
 Formats and displays the MANIFEST command reference point database.

 cat jniorsys.log.bak jniorsys.log -t 10
 Displays the last 10 lines of the system log even if the log has
 recently aged to the BAK file.

NOTES
 This command will accept piped data if any from a prior command and append
 to that each specified file. A file specification is not required if piped

 Page 56

 data is available.

 New with JANOS v2.4 the file specification may contain wildcards. The matching
 files are concatenated from oldest to latest modification date. For instance
 the third example above, combining the LOG files, could be executed as follows:

 cat jniorsys.log* -t 10

 Also new is the ability allowing the CAT command to utilize virtual folders
 created by ZIP/JAR library files. This unique feature has been utilized by the
 JANOS Web Server to serve entire websites with all of the files required from
 a single compressed library file as if presented in a folder of the same name.

 For example if you are using the JBakup application to preserve LOG files for
 an extended period, the BAK files for logs are combined and stored within a ZIP
 file in the /flash/baks folder. The following CAT command would access that
 backup and display the oldest 10 lines of the jniorsys log.

 cat /flash/baks/jniorsys.log/jniorsys.log.bak -h 10

 Here the file /flash/baks/jniorsys.log.zip created by JBakup generates a
 virtual folder. The CAT command can then look inside that to access the
 jniorsys.log.bak file it contains. This is a very powerful tool allowing
 you to search the extended logs by piping to a additional GREP command.

 Assuming that JBakup has processed the current BAK file into the archive,
 which it does on the quarter hour, the following command would list every
 recorded NTP time synchronization.

 cat /flash/baks/jniorsys.log/jniorsys.log.bak jniorsys.log | grep NTP

 This feature does require that you specify the absolute file path for the
 virtual folder. Relative paths and wildcards are not allowed.

SEE ALSO
 HELP Topics: MANIFEST, JSON, ASCII, JBAKUP, GREP

 Page 57

EGREP/GREP/FIND User Commands

NAME
 find - File Search Utility

ALIASES
 FIND, GREP, EGREP

SYNOPSIS
 find [OPTIONS] SEARCH FILE
 egrep [OPTIONS] REGEX FILE

DESCRIPTION
 This command searches a text FILE for matches to a specified SEARCH
 string. Each line containing a match is displayed. FIND and GREP search
 for an exact match to the string. Case-dependent and case-independent
 searches are possible. Regular Expressions (REGEX) are used with EGREP
 or when optionally selected.

 -E
 Use Regular Expressions (REGEX) for searches. This is the default
 with the command alias EGREP.

 -C
 Counts the number of lines with matches. Only the resulting count
 is reported.

 -N
 Displays the line number in the FILE for each matching line.

 -H
 Displays the FILE specification and line number for each matching
 line.

 -I
 Performs a case-independent search.

 -M
 This displays each matching line and subsequently underlines the
 matched text with a series of dashes '---'. When this option is
 used with REGEX the captured Groups as may be specified in the
 Regular Expression using parentheses () are displayed.

 -F FORMAT
 Output formatting using REGEX results. The FORMAT specifies an output
 string that is generated for each match. The group specifiers $1, $2,
 $3, etc. are replaced by the first, second, third, and so on group
 matches.

NOTES
 The output formatting option -F can be used to format a readable string or
 even a command that might be subsequently executed. For example the following
 extracts NTP server IP addresses from the syslog and generates PING commands
 to test NTP server validity (and response time).

 Page 58

 egrep sync.+(\d+\.\d+\.\d+\.\d+) jniorsys.log -f "@ping -qc 1 $1" | exec

 This results in PING command responses like these:

 Reply from 129.146.193.200 (66ms)
 Reply from 45.79.111.167 (69ms)
 Reply from 162.159.200.123 (21ms)
 Reply from 208.76.2.12 (79ms)
 No reply from 65.100.46.164
 Reply from 45.33.65.68 (28ms)

 The REGEX group matches an IP Address from the jniorsys.log file which is
 included in a series of formatted PING commands. The result is piped to
 an EXEC command that runs the piped list as if it were a batch file.

 Note that beginning with JANOS v2.4 both the Stratum and RTT (response time)
 are included in the system log when NTP time synchronization occurs.

SEE ALSO
 HELP Topics: BATCH, PING, REGEX

 Page 59

EDIT/ED User Commands

NAME
 edit - Text Editor

ALIASES
 EDIT, ED

SYNOPSIS
 edit FILE

DESCRIPTION
 The EDIT Editor is a simple text editor relying on VT-100 compatible
 terminal clients. It is fully compatible with the WebUI Console tab.

 EDIT opens the specified text file displaying a page of lines at a time.
 There are relatively few editing functions provided. It is important to
 know that Ctrl-Q exits the editing and at that point the option to save
 any modifications is offered. You can also optionally save the file with
 a new name. No mouse function is available.

 Editing Key Reference

 Ctrl-Q
 Exit the editor. Optionally save, rename or cancel at that point.

 Ctrl-Z
 Undo.

 Ctrl-Y
 Redo.

 Ctrl-A
 Drop the Anchor. The cursor keys can then be used to highlight or
 select text for subsequent editing. This is similar to holding the
 Shift key when editing on the computer but since VT-100 does not
 support Shift key status reporting we have to 'drop an anchor' and
 then drag it by moving the cursor.

 Ctrl-C
 Copy the selected text to the clipboard.

 Ctrl-X
 Copy the selected text to the clipboard and remove it from the
 file.

 Ctrl-V
 Paste any text from the clipboard to the current cursor location
 in the file.

 Ins
 The Insert key toggles between insert or overstrike on key entry.

 PgUp
 The Page Up key display the previous page of text if there is

 Page 60

 more to display.

 PgDn
 The Page Down key displays the next page of text until the end of
 the file is reached.

 Home
 Moves the cursor to the beginning of the current line. If you are at
 the beginning of a line it moves you to the beginning of the current page.
 If you are at the beginning of a page the Home key moves you to the
 beginning of the file.

 End
 Moves the cursor to the end of the current line. If you are at the end
 of a line it moves you to the end of the last line in the displayed page.
 If you are at the end of the last line of the page the End key moves
 you to the end of the file.

 Del
 Deletes the character at the cursor or deletes any selected text.

 Bksp
 Backspace deletes the character before the cursor or any selected
 text.

NOTES
 If you have selected text and begin typing, the selection is removed and
 replaced with your keystrokes.

 When using the WebUI you can right-click and Paste from the PC clipboard.
 Similarly you can select text by holding the Shift key and right-click
 to Copy the selection. This is independent from text selection cut, copy
 and paste in the editor.

 NOTICE
 This editor is a PRELIMINARY EXPERIMENTAL implementation and may
 be revised over time. It avoids, but is not a replacement for,
 having to upload a file, edit, download and potentially repeat.
 INTEG is open to your suggestions/complaints regarding its use.
 We have not attempted to replicate any existing terminal text
 editor with which you might already be familiar. We are not
 against doing so if you should have a recommendation.

 Page 61

SENDMAIL User Commands

NAME
 sendmail - Command Line Email Utility

SYNOPSIS
 sendmail [OPTIONS] RECIPIENTS [SUBJECT]

DESCRIPTION
 This command facilitates the creation of an email from the command line.
 The email will be sent if the Mail Server/Host is defined, a user email
 address is specified and proper user credentials have been entered
 through the IPCONFIG command.

 One or more RECIPIENTS must be specified. Multiple recipients are
 separated by a semicolon ';'. A SUBJECT line may be specified.

 The command will then accept entry of one or more lines of the message.
 The message entry is terminated by a single line containing the
 period '.' character.

 -C ADDRS
 Specifies one or more email address to be CC'd. Multiple recipients
 are separated by a semicolon ';'.

 -B ADDRS
 Specified one or more email address to be BCC'd. Multiple recipients
 are separated by a semicolon ';'.

 -I FILE
 Specifies a text file that is to be appended to the message. If used
 in combination with the -S option the email will contain only the
 message in FILE.

 -A FILES
 Specifies one or more attachments to be included with the email.
 Multiple attachments are separated by a semicolon ';'.

 -S
 Skip message entry. The email will either be blank or contain text
 specified by the -I option.

QUEUE MANAGEMENT
 When an email cannot be posted it will be queued and retried. The following
 options provide some management over queued email messages.

 -Q
 Lists all queued (not yet sent) email messages.

 -F
 Forces an immediate retry of queued messages. You may have corrected the
 issue preventing delivery and wish to immediately retry.

 -R
 Reset the queue. This removes all queued messages. Since it is unlikely

 Page 62

 that a queue would contain multiple messages a simple reset is provided.
 Individual messages cannot be removed/retried.

NOTES
 The JNIOR may be configured to send emails on particular events such as
 at boot. When configured to send at boot the default includes LOG files
 which can be useful in determining the reason for the reboot.

SEE ALSO
 HELP Topics: IPCONFIG

 Page 63

LOGGER User Commands

NAME
 logger - Log Entry Utility

SYNOPSIS
 logger [OPTIONS] MSGTEXT

DESCRIPTION
 Makes a log entry using the MSGTEXT. By default this logs to /jniorsys.log
 and to the SYSLOG Server if configured. This command is useful in batch
 and script files when the action should be logged. The log entry by default
 has a [logger] prefix tag.

 -F FILE
 Redirects the log entry to FILE.

 -T TAG
 Log the entry with a [TAG] prefix. Overrides [logger] default.

 -I
 Includes the Process ID (PID) with the entry.

 -R
 Directs the log entry to the external SYSLOG Server only.

 -P LEVEL
 Sets the severity level reported to the external SYSLOG server.

 0 - Emergency
 1 - Alert
 2 - Critical
 3 - Error
 4 - Warning
 5 - Notice
 6 - Info (Default)
 7 - Debug

SEE ALSO
 HELP Topics: BATCH, SCRIPTING

 Page 64

TELNET User Commands

NAME
 telnet

SYNOPSIS
 telnet DESTINATION

DESCRIPTION
 There are different ways to access the command line console. One way is by
 using a terminal or telnet client. For the PC there are tools such a PuTTY
 or even the Telnet client built in to the JNIOR Support Tool. Once you are
 working at the command line (beginning with JANOS v2.4) you can quickly
 access other JNIORs on the same subnet using the TELNET command.

 This may be helpful should you perhaps wish to check a setting on another
 unit so that the same setting could be made on the current one. You might
 also use this Telnet client command to manage other JNIORs for instance if
 you only have external access to this one. The FTP client can also be used
 to transfer files between peers.

 DESTINATION

 You must specify a destination that is running a Telnet server. The JNIOR
 by default is a suitable target. You can reference another JNIOR by IP
 Address or by its Hostname. The target's Hostname is resolved using the
 internal peers list.

 Telnet will also allow access to other servers. You can specify such a
 destination again using the IP Address or by its domain name.

NOTES
 While connected to the remote Telnet server the session will in every way
 act as if you had connected directly. The EXIT command can be used to terminate
 the session and return to the command prompt on the original unit.

 The Ctrl-Z keystroke can also be used to terminate the Telnet session.

SEE ALSO
 HELP Topics: FTP, HOSTNAME, EXIT

 Page 65

TOUCH User Commands

NAME
 touch

SYNOPSIS
 touch FILE

DESCRIPTION
 This command sets the last modification timestamp of FILE to the current
 time. This makes the file appear to be new. The content is not altered.
 If FILE does not exist a 0 length file is created.

SEE ALSO
 HELP Topics: LS, DIR

 Page 66

JAVA User Commands

NAME
 java - Execute Java Application

SYNOPSIS
 [java] FILESPEC [&]

DESCRIPTION
 This executes the Java program. FILESPEC typically defines a JAR file
 generated externally by a standard Java compiler such as Netbeans. The
 program must be expressly built using the JanosClasses.jar runtime library.

 The optional ampersand '&' must lie at the end of the line and when present
 causes the program to execute in the background as a new process.

 The JAVA command itself is optional. When a command line is processed and
 a built-in command has not been specified the system looks for a Java
 program. If FILESPEC does not specify a folder the system will search
 for the program, FILESPEC also does not need to include the .JAR extension
 as it will be assumed.

 Java programs are typically stored in the /flash folder. The system
 searches the /flash folder first. If the program is not found the search
 will continue in the root and then the current working directory before
 finally indicating that the program cannot be found.

NOTES
 Applications are started on boot using Run keys in the Registry.

 Run/<NAME> = <COMMAND>

 The NAME is arbitrary and usually the program name is used. The value of
 the key is handled as a COMMAND as if were entered from the command line.
 Programs started with Run keys execute in the background each with their
 own instance of the JVM.

SEE ALSO
 HELP Topics: PROGRAMMING, THD, PS

 Page 67

RUN/EXEC User Commands

NAME
 run - Execute Script
 exec - Executes commands in batch mode

SYNOPSIS
 run SCRIPT PARAMETERS
 exec BATCH

DESCRIPTION
 JANOS uses a PHP-like language for scripting. In batch file execution,
 scripts may be used to render batch file commands which are then
 executed. This is analogous to using PHP to render an HTML document
 which is then served to a browser. The RUN command executes the script
 the results of which are simply sent to the display. In this case
 the SCRIPT is essentially a program.

 The SCRIPT file typically has a PRG file extension. If an extension is
 omitted then .PRG is assumed. The system searches for the SCRIPT file
 as it would a Java program. Scripts may be placed in the /flash
 folder and easily executed without path or extension using RUN.

 Script files accept PARAMETERS as do batch files and Java applications.

 The EXEC form of the command simply executes the supplied BATCH file.
 This is equivalent to entry of the filename at the command line except
 that the BAT file extension is not required.

NOTES
 The RUN command can be used to render a batch program allowing you to
 examine the resulting commands without executing them. Once you are
 satisfied that the script generates the correct command set you can
 execute the batch file normally.

 A SCRIPT could be written to output information using the ECHO command
 allowing it to be used without the RUN command in batch mode.

 Scripts are compiled and therefore run fairly efficiently. The resulting
 compiled script is cached for the duration of the command session.

 The RUN/EXEC command will process a piped command set.

EXAMPLES
 Let's take the following script easily created in the /flash/hello.bat
 file using the ED editor. Here we display the script and use GREP
 to enumerate the lines for us.

 bruce_dev /> cat /flash/hello.bat | grep -n
 1: <?
 2: print('@echo "Yo! Hows it goin?"');
 3: ?>

 bruce_dev />

 Page 68

 Here we use the script PRINT command to output a single command line
 utilizing ECHO to offer the hello salutation. The '@' in the created
 command line instructs the batch processing to not echo the command itself.
 We just want to see the greeting.

 The script can be simply executed by name.

 bruce_dev /> hello
 Yo! Hows it goin?

 bruce_dev />

 We can use RUN to validate the script output without executing it as
 follows. This shows you what the script produces without invoking the
 batch processor to execute the line.

 bruce_dev /> run hello.bat
 @echo "Yo! Hows it goin?"

 bruce_dev />

 Although we execute this script by simply entering its name on the command
 line we could more explicitly cause it to execute using the EXEC command.

 bruce_dev /> exec /flash/hello.bat
 Yo! Hows it goin?

 bruce_dev />

 Now we can see the difference between RUN and EXEC. Here we use RUN to
 render the command and then hand that to the batch processor for the same
 now familiar result.

 bruce_dev /> run hello.bat | exec
 Yo! Hows it goin?

 bruce_dev />

 Just a word about the script. In the program above, line 3 is unnecessary
 as the end of file is a suitable termination for a script. Also, in this
 case the script performs such a simplistic action that the scripting is
 really itself unnecessary. You might imagine, however, that you may want
 to create a more complicated procedure like that in the CKSUMS script.

SEE ALSO
 HELP Topics: BATCH, SCRIPTING, PHP, CKSUMS

 Page 69

SETENV/SET User Commands

NAME
 set

ALIASES
 SETENV, SET

SYNOPSIS
 set
 set VARIABLE
 set VARIABLE = VALUE

DESCRIPTION
 Each process has its own Environment. This command displays the variables
 that may be defined in the current Environment.

 If VARIABLE is specified its value will be displayed. If VALUE is given
 then the variable will be replaced.

NOTES
 Environment variables are case-sensitive and are inherited from a parent
 process.

 An Env/ Registry Key may be used to pre-initialize a variable in the
 Environment. This would insure that it is always defined.

SEE ALSO
 HELP Topics: ENVIRONMENT

REM User Command

SYNOPSIS
 rem TEXT

DESCRIPTION
 On the command line and in batch files the REM command has no effect. The
 content of the line is ignored and can serve as a comment.

 Page 70

ECHO User Commands

NAME
 echo - Display a message

SYNOPSIS
 echo MESSAGE

DESCRIPTION
 The echo command displays MESSAGE to the console. The MESSAGE can be
 redirected to a file as can the output of any command.

 The entire remaining command line is echoed. Leading and trailing spaces are
 trimmed and multiple spaces within the message are shortened to a single
 space. If white space is to be preserved in formatting the string may be
 enclosed in double quotation marks. Those will be removed. Escaping of
 non-printable characters is supported.

SEE ALSO
 HELP Topics: SCRIPT, CKSUMS

 Page 71

PS User Commands

NAME
 ps - Process List

SYNOPSIS
 ps [OPTIONS]

DESCRIPTION
 Lists currently active processes along with the Process ID (PID). This
 command also displays the current uptime.

 -V
 Provides additional process information.

 runtime - Total runtime accumulated
 mem - Amount of memory in use (KB)
 msg - Number of inter-process messages pending (should be 0)
 hnd - Number of handles allocated
 stk - Maximum stack usage (percent)
 frm - Count of Stack frames (Applications)

NOTES
 Developers want to insure that an application does not monopolize CPU
 resources. An application abnormally accumulating runtime may benefit
 from the use of process sleep() and yield() functions where appropriate.

 Stack usage above 50% should be watched carefully. Use of recursive routines
 in programs can drive stack usage up. A program will assert and stop should
 it use up the available stack space.

 Handles are required for various I/O activities and should be released if
 no longer required. These are a limited resource as well.

 Inter-process messaging is essential in creating functionality like
 custom protocols. The application program creates a message pump/queue
 in order to send and receive such messages. It is imperative that the
 queue be serviced promptly. A building msg count signals a messaging
 issue which certainly will impact system performance.

SEE ALSO
 HELP Topics: THD, KILL

 Page 72

THD User Command

NAME
 thd - Display JVM Thread Status

SYNOPSIS
 thd [OPTIONS]

OPTIONS
 -V
 Verbose -- If the associated application is compiled to include DEBUG
 information the classes where a line number may be available are
 displayed from the thread's stack trace. This provides information as
 to what part of the program is being executed.

 -E
 Shows changes in process time. When the THD command is executed without
 the -E option the process times are recorded for use here. The -E option
 then uses those saved times to display the elapsed process time. This
 can be used to check thread activity.

 -X
 Extended -- This provides detailed stack trace information.

DESCRIPTION
 Applications are written in Java and each executes with its own instance of
 a Java Virtual Machine (JVM). The THD command displays the status of each
 active JVM.

 Each process is listed along with the accumulated process time, memory
 usage, PID and stack as would be displayed by the PS command. In addition
 the amount of memory associated with active Java Objects and classes is
 shown.

 Each Thread in the program is enumerated along with the associated
 amount of runtime accumulated by the thread. The status of the thread is
 indicated. For instance SLEEP is shown if a thread has executed a
 sleep().

 If an application sets a system Watchdog the status of the watchdog is
 displayed along with the remaining time on its timer.

SEE ALSO
 HELP Topics: PS, KILL, JAVA

 Page 73

KILL User Commands

NAME
 kill - Terminate Process

SYNOPSIS
 kill PID
 kill PROCNAME
 kill -A

OPTIONS
 -A
 Terminates all active Java applications.

DESCRIPTION
 This command allows you to terminate a process that is running in the
 background. The PID parameter is the ID of the process as shown by
 the PS command. You may also identify a process by its PROCNAME or
 description displayed by the PS command.

NOTES
 The system attempts to shutdown the process by setting an interrupt flag
 as would occur when using Ctrl-C to interrupt a foreground program. If
 the process has not shutdown on its own after 15 seconds it is
 terminated forcibly.

SEE ALSO
 HELP Topics: PS, THD

 Page 74

NV User Commands

NAME
 nv

DESCRIPTION
 This lists any application created non-volatile memory blocks sometimes
 referred to as "immutable blocks". These blocks provide a form of
 fast variable storage that retain content through a reboot/restart.

GC User Commands

NAME
 gc - Garbage Collection

SYNOPSIS
 gc [OPTIONS]

DESCRIPTION
 JNIOR applications are Java programs and Java programs continually create
 objects using memory. When objects fall out of scope (are no longer used)
 they must be cleaned up. This process is called Garbage Collection (GC).

 The GC activity under JANOS has minimal impact on program performance. The
 GC command is available for status.

 -R
 Resets statistics.

 -D
 Disable GC. This option is available to assist in diagnostics and
 performance evaluations. GC will automatically restart when memory
 reaches a critical level.

DIAGNOSTICS
 Memory management is a vital part of system and application development. It
 is possible to cause a Memory Leak when memory is allocated and not
 released. This is a situation when memory slowly becomes unavailable until
 performance is impacted.

 There are a couple of options to the GC command that provide memory allocation
 detail that can assist in detecting a memory leak and tracking down the cause.

 -M
 Lists the Top 10 memory allocation sources (hex address) by decreasing
 memory usage. When repeating the GC -M command if there is a source
 with continuously increasing usage (and block count) then a leak is
 the suggested cause.

 -B
 Lists the Top 10 memory allocation sources by decreasing block counts.

 Page 75

 A memory leak involving very small blocks may not stand out against
 applications with higher memory usage. Here we can watch the block
 count.

 -L
 List all memory allocation by decreasing usage.

NOTES
 Memory leaks within the operating system need to be corrected. If you suspect
 a leak you should report it to INTEG. While OS leaks have occurred, most have
 been eradicated.

 JNIOR Applications are written in Java and scripts in PHP both of which are
 managed languages. Memory management is not the job of the programmer in
 those cases. However, Arrays, Vectors and Hashtables can continuously collect
 entries that potentially may never be removed. This is essentially a memory
 leak that will lead to performance issues. These situations become evident in
 the GC diagnostics.

 Not all JNIOR applications are developed and maintained by INTEG. Many
 customers handle their own application programs. These diagnostic tools are
 being provided to assist them.

 The hexadecimal addresses relate to locations within the operating system.
 if you suspect a leak and need more information contact Technical Support.

 Page 76

EXTERN User Commands

NAME
 extern - External Module Utility

SYNOPSIS
 extern [OPTION]

DESCRIPTION
 Displays the status (present or not preset) and the ID string assigned
 by the factory.

 -R
 Removes devices that are no longer present.

NOTES
 Module order affects the extension of the internal I/O. For instance the
 Model 410 has 8 relay outputs 1 - 8. Adding an external 4ROUT module then
 adds relays 9-12. Adding another module adds relays 13-16 for a maximum
 of 16. The order in which the modules are added determines the relationship
 to the relay numbers.

 To insure the proper order:

 1. Disconnect all external modules.
 2. Execute the EXTERN -R command
 3. Connect the first module (for relays 9-12 for instance).
 4. Execute EXTERN confirm that the module has been recognized.
 5. Connect the second module.

 The order would then be correct and properly remembered.

 Do not attempt to manipulate the TypeHH_N Registry keys. These are
 dynamically updated by the system.

 Page 77

IOLOG User Commands

NAME
 iolog - I/O Log Utility

SYNOPSIS
 iolog [OPTIONS]

DESCRIPTION
 The IOLOG command provides access to digital and communications logs that
 are available for digital inputs, relay outputs, the AUX serial port and
 the JNIOR Sensor Port (expansion bus).

 The command entered without OPTIONS generates the /jniorio.log file
 containing detailed entries for each digital transition of an input
 or relay.

 -T
 Indicates digital transitions. The standard /jniorio.log uses
 0's and 1's indicating the state of the input or output. An
 entry is made when a state changes. This option uses an 'L' to
 indicate and state changes 1->0 and an 'H' for the change 0->1.

 -A
 This option specifies the AUX port. This generates the /auxio.log
 file detailing communications activity over the AUX port.

 -S
 This option specifies the Sensor Port. This generates the
 /sensorio.log file detailing communications with external modules.

 -E
 Uses an expanded format for serial transmissions separating the
 transmitted (Tx) from received (Rx) data. This will be easier to read
 when working with a remote device that echos data or when using RS-485
 2- wire communications.

 -O
 Redirects output to the console. This displays the log to the
 console and the associated file is not generated.

 -R
 Resets the logs. All previous activity either digital or serial is
 erased.

NOTES
 Serial logs are in hexadecimal. Data transmitted by the JNIOR is shown
 as HH along with the character representation. Data received by the
 JNIOR is surrounded by dashes as -HH- to distinguish the direction
 of the communication. The NETSTAT command provides a network capture
 capability that is also useful in diagnostics.

SEE ALSO
 HELP Topics: NETSTAT, JRMON, ASCII

 Page 78

JRMON User Commands

NAME
 jrmon - JNIOR I/O Utility

SYNOPSIS
 jrmon [OPTIONS]

DESCRIPTION
 This command provides command line access to the I/O features of the
 JNIOR. It is a useful diagnostic tool as well.

 When executed without OPTIONS the command displays the current state
 of digital inputs and relay outputs including those assigned to external
 4ROUT modules. A 'twirly' (a character sequence / - \ | emulating rotation)
 spins to indicate active monitoring. Any keyboard keystroke exits the
 command.

 WARNING: THE FOLLOWING COMMANDS AFFECT RELAY STATES AND THEREBY ANY
 EQUIPMENT WIRED TO THOSE RELAYS. DO NOT ATTEMPT THESE ACTIONS UNLESS
 YOU ARE CERTAIN THAT THE RESULT WILL NOT DAMAGE EQUIPMENT OR OTHERWISE
 CAUSE UNWANTED EVENTS TO OCCUR.

ACTIONS
 Single character commands are accepted at the JRMON prompt in interactive
 mode. A sequence is executed with the ENTER keystroke. These can also be
 executed from the command line using the JRMON -X command.

 [C]lose NNN
 Causes 1 or more relays to Close (be activated, LED illuminates). For
 example 'c35' closes Relay Outputs 3 and 5 simultaneously.

 [O]pen NNN
 Causes 1 or more relays to Open (be deactivated, LED extinguishes). For
 example 'o35' opens Relay Outputs 3 and 5 reversing the above example.

 [P]ulse
 A relay may be pulsed for a very specific time defines in milliseconds.
 This action must be combines with a Close or Open. For instance the
 command 'cp2' pulses Relay Output 2. This can pulse an output ON for a
 moment and then back OFF. I can also pulse the output OFF and then back
 ON.

 Pulses have a duration. The default pulse duration is 100 milliseconds.
 The '=' equals sign can be used to specify the pulse duration. The
 command 'c1p = 2000' pulses Relay Output 1 foe 2 seconds. This does not
 alter the default and therefore the command 'c1p' pulses the same output
 for just 0.1 seconds (100 milliseconds). However, the command 'p = 2000'
 alters the default to 2000 milliseconds.

 NNN
 Relay outputs and Digital Inputs are identified by single individual
 numeric digits. You can enter 1 or more digits. Relay Outputs 1-8 are
 designated with numerals '1' thru '8'. Relay Outputs 9-12 are considered
 to be a second bank of 8 and are referenced by preceding the digit with

 Page 79

 the '+'sign. The command 'c1+12' closes Relay Outputs 1, 2, and 9.
 An '*' asterisk specifies ALL. You can open all relays with the
 command 'o*'.

 [R]eset NNN
 Digital Inputs may be latched. Depending on configuration these may
 reuire manual intervention to be reset or unlatched. The command 'r2'
 resets any active latching on Digital Input 2.

 [L]ist
 The 'l' lowercase 'L' command lists the values of the input counters.

 [S]et NNN
 This sets the counter or counters for the specified Digital Inputs. You
 can set a counter to a specific value if a correction is needed or clear
 the counters to 0 zero. The command 's1=1241' set the counter to Digital
 Input 1 to 1,241 while the command 's*=0' resets all counts to 0 zero.

 [U]sage
 The 'u' command displays the value of Usage (Metering) timers. These may
 be viewed and can only be reset by application.

 [Q]uit
 The 'q' command exits JRMON terminating the interactive session.

COMMAND LINE SYNTAX
 -C
 Enters Control Mode. In this mode commands may be issued to Close,
 Open or Pulse individual relays or even all of the relays. For example:

 q - exit the program
 c1 - close Relay Output 1
 o1 - open Relay Output 1
 c3p=2000 - close Relay Output 3 for 2 seconds (pulse)
 c25 - close Relay Outputs 2 and 5 simultaneously
 o* - open all Relay Outputs

 Relay Outputs 1-8 are defined by a single character. The plus '+'
 sign is used to reach relays 9-16 with digit characters 1-8.

 c+1 - close Relay Output 9
 c5+2 - close Relay Outputs 5 and 10

 The default pulse is 100 milliseconds. This can be altered for the
 current command instance.

 p=5000 - set 5 second pulsing
 c1p - close Relay Output 1 for 5 seconds
 c2 - close Relay Output 2
 o2p - open Relay Output 2 for 5 seconds.

 Digital inputs can be configured for Latching. Once latched the input
 need to be reset somehow and possible by an application.

 Page 80

 r2 - reset latched Digital Input 2

 Input transitions are tallied by Counters. These can be displayed and
 even preset by the following actions.

 l - list counters (lowercase L)
 s1=1024 - set DIN1 counter to 1024
 s*=0 - reset all counters

 Usage meters tally time for inputs and outputs. While those cannot be
 set here you can view them.

 u - view all usage meters

 -X CMD
 Execute control command CMD immediately and return. This performs the
 request and does not enter the monitoring mode. The following immediately
 opens all relays.

 jrmon -x o*

 -D
 Diagnostics Mode. This is the same as the -C Control Mode with the
 addition of a T action. This runs a complex pattern of relay outputs
 just to showoff the relays. It is interesting but would be really
 really bad if anything were actually wired to the JNIOR.

 -M
 System Monitor mode. This mode is not related to I/O but allows you
 monitor system load in real-time. The system load is determined by
 measuring the overhead time involved in process swaps away from the
 monitoring process. System heap status is also shown. Any keyboard
 input exits the command.

SEE ALSO
 HELP Topics: IOLOG

 Page 81

MODE User Commands

NAME
 mode - Adjust system mode.

SYNOPSIS
 mode [OPTION]

DESCRIPTION
 The MODE command is provided for modifying the mode of the COM RS-232
 port. The COM port provides access to the Command Line Console and also
 provides diagnostic dialog during boot. If the port is to be used in an
 application the default diagnostic and command line operation can be
 disabled. The application may do so through programming. The MODE command
 can be used to restore default operation.

 -S
 Option silences the COM port dialog and disables command line
 access.

 -V
 Restores COM port boot dialog and command line access.

 -A
 Temporarily allows Command Line access through the AUX port.

NOTES
 The COM port setting is stored in the COMSerial/BootDialog Registry
 key. The AUX port command line capability once activated is available
 only until power is removed.

 Page 82

USERS User Command

NAME
 users - List User Accounts

DESCRIPTION
 The USERS command lists the current set of defined users. The output
 includes the Username, UserID and Account Permissions. Accounts either
 have 'Administrator' permissions, 'Control' capabilities, or are
 'Guest' accounts.

 Admistrators can perform all actions, execute everything and make any and
 all configuration changes. Users with Control capabilities can control the
 state of outputs and have access to a limited set of commands. Guests
 basically can only monitor the status of the JNIOR I/O.

 In addition to permissions a user account may be 'Disabled'. This allows
 an account to be rendered inactive without removing it. This would
 allow the account to later be reactivated.

 Accounts also have passwords. These cannot be displayed.

NOTES
 By default the JNIOR ships with 4 accounts defined. The USERS command
 shows:

 admin 3 Administrator
 guest 0 Disabled
 jnior 1 Administrator
 user 2 Control

 The default passwords are set to be the same as the user names.

 When you install a JNIOR you might decide whether as Administrator you
 are going to use the 'jnior:jnior' account or the 'admin:admin' account
 and use the USERMOD command to disable the other accounts. Then use the
 PASSWD command to set a unique password for the administrator.

SEE ALSO
 HELP Topics: DEFAULT_ACCOUNTS, USERADD, USERDEL, USERMOD, GROUPS, SAFEMODE

 Page 83

PASSWD User Commands

NAME
 passwd - Change User Password

SYNOPSIS
 passwd [USERNAME]

DESCRIPTION
 Sets the password for the USERNAME account. The USERNAME parameter can only
 be specified by an Administrator. When USERNAME is not specified this sets
 a new password for the current account.

 You are asked to first enter the current password to authenticate and then
 the new password. You will need to succesfully reenter the new password
 before the command will make the change.

NOTES
 Passwords may contain any characters however they must be at least 4
 characters in length and no more than 19 characters.

 If you have forgotten your Administrator account (jnior) password you will
 need to use SAFEMODE to regain access to the unit. This procedure requires
 physical access to the JNIOR.

SEE ALSO
 HELP Topics: SAFEMODE

 Page 84

USERMOD User Commands

NAME
 usermod - Modify User Permission

SYNOPSIS
 usermod USER ACTION

DESCRIPTION
 This command is user to set or unset the Administrator, Control or
 Disabled flags associated with the USER account. Onlys a single flag
 may be modified by ACTION with each command use. The USERS command
 can be used to confirm the changes. The actions are as follows:

 +A Add Administrator permissions
 -A Remove Administrator permissions
 +C Add Control capabilities
 -C Remove Control capabilities
 +D Disable an account
 -D Activate an account

NOTES
 Administrators by definition can perform all of the Control actions and
 the Control flag need not be set for administrators.

 An account without Administrator permissions and Control capabilities is
 considered a Guest account. These have limited access and can only monitor
 things.

 Any account can be temporarily Disabled and later activated.

SEE ALSO
 HELP Topics: DEFAULT_ACCOUNTS, USERS

 Page 85

USERADD User Commands

NAME
 useradd - Add New User

SYNOPSIS
 useradd [OPTIONS] USERNAME

DESCRIPTION
 This command adds the USERNAME user. USERNAME cannot already exist. If
 OPTIONS are not specified the user is created as a Guest. With the creation
 of the user you are asked for a password and must successfully reenter the
 password.

 -D
 Creates USERNAME as a Disabled account. A password must still be set.

 -C
 Creates USERNAME with Control capabilities.

 -A
 Creates USERNAME as an Administrator.

NOTES
 Use the USERS command to confirm the account creation. Login as the user
 and confirm the password as well as the intended permissions.

SEE ALSO
 HELP Topics: DEFAULT_ACCOUNTS, USER, USERMOD, USERDEL

 Page 86

USERDEL User Commands

NAME
 userdel - Delete User

SYNOPSIS
 userdel USERS

DESCRIPTION
 This command removes one or more users from the system. There are no
 options or confirmations. Multiple users may be removed simply by
 listing them separated by spaces.

NOTES
 You cannot remove the current user. Since you must be an Administrator
 to remove users you can never remove all of the Administrator accounts.
 That would obviously be a bad thing.

SEE ALSO
 HELP Topics: DEFAULT_ACCOUNTS, USERS, USERADD

GROUPS User Commands

NAME
 groups - List Groups

DESCRIPTION
 A Group can have one or more members. Each member is a user account. The
 GROUPS command lists the available Groups, the Group ID and the members.

SEE ALSO
 HELP Topics: GROUPADD, GROUPDEL, CHGRP, FILES

GROUPADD User Commands

NAME
 groupadd

SYNOPSIS
 groupadd GROUP USERLIST

DESCRIPTION
 This command adds each member from USERLIST to the GROUP. If the GROUP does
 not exist it is created. The USERLIST can contain one or more account names
 separated by spaces.

SEE ALSO
 HELP Topics: GROUPS, GROUPDEL, CHGRP, FILES

 Page 87

GROUPDEL User Commands

NAME
 groupdel

SYNOPSIS
 groupdel GROUP USERLIST

DESCRIPTION
 If the USERLIST is omitted the command will remove the entire GROUP. If
 the GROUP has members a confirmation of the deletion is required. Otherwise
 the command removes each member of the USERLIST from the GROUP. The
 USERLIST may specify one or more account names separated by spaces.

SEE ALSO
 HELP Topics: GROUPS, GROUPADD, CHGRP, FILES

CHGRP User Commands

NAME
 chgrp

SYNOPSIS
 chgrp [OPTIONS] GROUP FILESPEC

DESCRIPTION
 This command alters the Group assignment for FILESPEC. Wildcards may be used
 to alter a set of files or directories.

 -S
 When wildcards are used this applies the change recursively through
 sub-directories.

 -D
 Alter Group assignment on a directory. This option is required when
 changing the Group assigned to one or more directories. This is
 necessary to signal the intent in wildcard and recursive actions.

 -V
 Provides additional detail when changes occur.

SEE ALSO
 HELP Topics: GROUPS, GROUPADD, GROUPDEL, FILES

 Page 88

WHOAMI User Commands

NAME
 whoami - Display current user

DESCRIPTION
 Displays the current username, userID and role.

NETSTAT User Commands

NAME
 netstat - Network Status Utility

SYNOPSIS
 netstat [OPTIONS]

DESCRIPTION
 This displays the status of the LAN connection and lists all of the
 active network connections as well as any of the services accepting
 connections.

 -U
 Displays any services accepting connectionless UDP packets.

 -A
 Displays network statistics such as packet and error tallies.

 -M
 Dynamically displays network activity. The display mode is exited
 by any keyboard entry.

 -C [FILTER]
 Generates the /temp/network.pcapng capture file which contains
 recent network traffic. This may be downloaded and opened with
 Wireshark https://wireshark.org . An optional FILTER may be used to
 limit the content.

 -F [FILTER]
 JANOS always buffers recent network traffic for capturing. This
 option can set a FILTER to limit the traffic collected. Since only
 a limited space is available for buffering, a filter can be used
 to retain packets of interest for a much longer period of time.
 The filtering is removed if FILTER is omitted.

 -R
 Resets the network buffer removing prior buffered traffic.

 -T
 Displays TLS statistics regarding the negotiation of various security
 suites.

 -S [FILTER]
 The -C option generates a PCAPNG file that can be remotely opened in

 Page 89

 Wireshark. The -S option enables a real-time network scanner/sniffer
 where packets are displayed as they occur. Any keystroke will terminate
 the scanning. A FILTER can be specified to limit the packets listed to
 only those of interest.

 -P [FILTER]
 This displays packets from the current capture buffer. A FILTER may be
 defined to limit the list to only packets of interest. If this option
 is used in combination with -S, once packets are displayed from the
 capture buffer the scanner will proceed to display new packets as they
 occur.

 -D
 Enables the hexadecimal dump of packet payload when used with either
 the -S and/or -P options. This displays only the data and not the
 associated headers (such as MAC, IP and TCP/UDP headers).

NETWORK SCANNER
 New with JANOS v2.4 is that ability from the command line to view ongoing
 network communications in real-time. As more and more JNIOR applications
 involve the interaction with remote network equipment it becomes important
 in testing to get immediate feedback as to proper operation. The NETSTAT -S
 network scanner displays network traffic as it happens.

 As network packets are received and transmitted JANOS records them for later
 analysis. This has always been available for export and analysis by Wireshark
 through the NETSTAT -C option. The amount of network data available at any
 one time is limited by the size of the capture buffer established by the
 setting of the IpConfig/CaptureBuffer Registry key. By default this is a
 modest 512KB and can be expanded to 8MB. Depending on the frequency of network
 communication and the amount of data exchanged the network history in terms
 of time can be quite small and on the order of only several minutes.

FILTERING
 A capture filter can be used to limit the traffic being recorded. A FILTER
 can be set using the NETSTAT -F command. This filter then permits only
 certain communications to be recorded in the capture buffer. When analyzing
 the interactions with one particular remote device this can greatly increase
 the amount of time covered and the amount of interaction available for
 review.

 NOTE
 When using the scanner to look for specific interactions
 make sure that these are not filtered. The NETSTAT -F
 command without a filter specification removes any existing
 filter. These are Registry changes that are logged in the
 jniorsys.log file if you need to determine a prior setting.

 The FILTER specified with the NETSTAT -C, -P and -S options is a restriction
 imposed on the data being retrieved from the capture buffer. That is to say
 after what might already be filtered by the -F filter. If you are looking for
 a specific communication it must not be first filtered on reception and then
 not filtered upon display.

 Page 90

 When running the scanner, network communications related to the current
 connection are automatically filtered. For instance, if you are accessing the
 command line console using Telnet those packets will not be displayed as you
 are likely looking for other traffic. This is a secondary filter in addition
 to (and does not alter) any FILTER that you define regarding display. This
 traffic will however be captured in the buffer unless filtered by the incoming
 -F filter. (See IpConfig/Filter).

REAL-TIME
 The NETSTAT -P command will display the (optionally) selected packets from the
 capture buffer. That would start from the oldest available right up to the
 present moment. At the completion of display you are returned to the command
 prompt.

 To view real-time traffic use the NETSTAT -S command (with optional filter).
 This will immediately display new packets (matching your filter) as they
 occur. This will continue for as long as the command is active. Any keystroke
 will interrupt the command and return you to the prompt.

 If you are interested in traffic past and present you will need to use both
 options in one command. For instance NETSTAT -PS or NETSTAT -SP. Notice that
 if you issue the NETSTAT -P and then after returning to the prompt you give
 the NETSTAT -S command there is a chance that you would skip packets occurring
 between the two command executions.

DISPLAY FORMAT
 The network scanner displays packets in a similar fashion as Wireshark. With
 each packet a timestamp is displayed followed by the source IP address, source
 port number, the destination IP address and destination port number. The
 timestamp does not display the date given that a capture extending over days
 is unlikely. The following is a brief moment in time and happens to show only
 broadcast traffic. The -V option includes underlying packets for ARP, ICMP and
 so on, which are normally not listed.

 ** Packets for current session not displayed
 Timestamp Src_IPaddr srcprt Dst_IPaddr dstprt typ
 12:01:56.728 10.0.0.20 17500 255.255.255.255 17500 UDP
 12:01:56.730 10.0.0.20 17500 255.255.255.255 17500 UDP
 12:01:56.730 10.0.0.20 17500 10.0.0.255 17500 UDP
 12:01:57.470 10.0.0.27 17500 10.0.0.255 17500 UDP
 12:01:58.462 10.0.0.17 60504 10.0.0.255 1947 UDP
 12:02:01.252 10.0.0.20 54131 255.255.255.255 1947 UDP
 12:02:02.541 10.0.0.5 137 10.0.0.255 137 UDP
 12:02:04.180 10:78:d2:75:14:06 Integpro_00:07:f9 ARP
 12:02:04.180 Integpro_00:07:f9 10:78:d2:75:14:06 ARP
 12:02:05.258 10.0.0.20 54131 10.0.0.255 1947 UDP

 Page 91

 The right side of each line may define the protocol and provide some additional
 details.

 typ proto detail
 UDP (144 bytes)
 UDP (144 bytes)
 UDP (144 bytes)
 UDP (154 bytes)
 UDP (40 bytes)
 UDP (40 bytes)
 UDP NBNS (50 bytes)
 ARP Who has 10.0.0.102? Tell 10.0.0.20
 ARP 10.0.0.102 is at 9c:8d:1a:00:07:f9
 UDP (40 bytes)

 If additional analysis is needed then an export using NETSTAT -C and subsequent
 viewing in Wireshark is recommended.

PAYLOAD
 The NETSTAT -D option used with either the -S, -P or -SP scanning, displays in
 hexadecimal and ASCII the data contained in the payload portion of the
 communications.

 Here we use the DATE -N command to update the clock using NTP and then look
 at the network exchange. Notice that NTP uses port 123 and we can use 'NTP'
 in the filter definition since it is a standard port for that.

 bruce_dev /> netstat -pd NTP
 LAN connection active (100 Mbps)
 ** Packets for current session not displayed
 Timestamp Src_IPaddr srcprt Dst_IPaddr dstprt typ proto detail
 12:20:33.562 10.0.0.102 53270 50.205.57.38 123 UDP NTP (48 bytes)
 0000 0b000000 00000000 00000000 00000000 00000000
 0014 00000000 e818b7d1 8fdf3b64 00000000 00000000 h.7Q._;d........
 0028 00000000 00000000
 12:20:33.601 50.205.57.38 123 10.0.0.102 53270 UDP NTP (48 bytes)
 0000 0c0106e7 00000000 00000000 47505300 e818b7d1 ...g........GPS.h.7Q
 0014 00000000 00000000 00000000 e818b7d1 94731021 h.7Q.s.!
 0028 e818b7d1 94735fe5 h.7Q.s_e

 bruce_dev />

 Here we see the binary exchange with the network time server. None of the
 packet payload involves characters that make sense. The ASCII is displayed
 however since in some cases text is clearly exchanged (in serial commands
 with some devices for instance) and translation from the hexadecimal ASCII
 is a chore.

 If you use NETSTAT -C to export this and then open the capture file in
 Wireshark a complete parsing of this exchange is available.

SEE ALSO
 HELP Topics: FILTER, ASCII

 Page 92

CERTMGR User Commands

NAME
 certmgr - TLS/SSL Certificate Management

SYNOPSIS
 certmgr OPTIONS

DESCRIPTION
 JNIOR network connections support TLS v1.02 security. This insures that
 information passed over the connection is encrypted and unreadable. Most
 importantly this protects usernames and passwords which are normally
 required to gain access to the JNIOR.

 A Certificate is required during TLS negotiation. This not only verifies
 the identity of the JNIOR but also passes public key information. The
 CERTMGR command performs a number of functions related to keys and
 certificates.

 By default the JNIOR generates a unique and secret key pair. It then
 creates a self-signed certificate for use in negotiating a TLS connection.

 -V
 Verifies the current active keys and the associated certificate.

 -C [FILE]
 Regenerates the self-signed certificate. If FILE is specified an
 externally generated certificate is installed. This must be in PEM
 format.

 -A FILE
 Adds an intermediate certificate. The FILE must be in PEM format.

 -S FILE
 Validates the digital signature on the certificate in FILE.

 -K FILE
 Installs an RSA key pair from the FILE. The key file can be encrypted
 and the command will prompt for the password.

 -D [FILE]
 Dumps the current certificate or if FILE is specified the certificate
 within the file. This formats the ASN.1 content in a somewhat
 readable form.

 -E FILE
 Exports the current certificate to the FILE in PEM format. Note that
 the resulting file can be added to your computer's trusted certificate
 store allowing your browser to trust the JNIOR. This avoids warning
 messages.

 -P FILE
 This exports the current Public Key to FILE. The Private Key is secret
 and cannot be exported.

 Page 93

 -B
 Performs the certificate export in binary format. This option is used
 in conjunction with the -E export option.

 -G [BITS]
 Generates a new RSA Key Pair. This requests that a new key pair be
 generated and this is performed as a background process. By default
 a 1,024 bit key pair is generated. The optional BITS parameter can
 define a different bit length. Note that only a limited range of key
 sizes are possible.

 -X FILE
 This generates a Certificate Signing Request (CSR) from the installed
 RSA Key Pair. A CSR can be provided to a suitable Certificate
 Authority (CA) for signature. The resulting signed certificate can
 then be installed with the -C FILE option. The JNIOR would then be
 trusted by browsers.

 -R
 Restore default credentials. The JNIOR is shipped with a temporary
 512 bit RSA key pair. Once up an running the JNIOR will generate a
 1,024 bit key pair as a background task. This option resets the key
 pair and repeats that process.

NOTES
 When IP addressing or the hostname is changed the JNIOR will automatically
 generate a new self-signed certificate.

 Page 94

PING User Commands

NAME
 ping

SYNOPSIS
 ping [OPTIONS] [ADDRESS]
 ping [OPTIONS] [HOST]

DESCRIPTION
 PING is used to test the ability to communicate with a specific HOST over
 the IP network (Internet). A small packet is transmitted to a destination
 which, if it is configured to do so, will reply. The round trip time is
 displayed. A HOST may be specified by IP ADDRESS or Domain Name.

 -C COUNT
 By default PING will make 4 communication attempts. This number may
 be specified by COUNT.

 -I MILLIS
 By Default PING sends a communication every 1 second. This interval
 may be specified by MILLIS in milliseconds (1 sec = 1000 milliseconds).

 -T TTL
 The Time To Live (TTL) specifies "how far" a packet is allowed to
 travel. This is in hops and by the standards each router handling
 the packet counts as a step. By default TTL is 128. Using a limited
 TTL allows you to probe only the local network neighborhood.

 -W MILLIS
 After a packet is transmitted the JNIOR waits for a response. By
 default if there is not response in 5 seconds the target is declared
 unreachable. This timeout period can be specified in milliseconds.

 -V
 This option validates the JNIOR network configuration. This PINGs
 all of the configured addresses for the Gateway, DNS servers, Mail
 Server, NTP Server, and SYSLOG Server. This also checks access to
 the INTEG website at www.integpg.com which is just a simple way to
 confirm access to the Internet.

 -F
 The Flood option can be used to test communications reliability.
 This continually PINGs the target. A "twirly" is displayed (a
 sequence of characters / - \ | mimicking rotation). If a response
 is lost the twirly is replaced with a period '.' and the test
 continues. This provides a feeling for reliability as periods
 appear or do not appear during the test. A Ctrl-C key combination
 terminates the activity and reports statistics.

 -Q
 Quiet mode removes status text from the command output. Only PING
 results will be reported.

 Page 95

NOTES
 The standard implementation of a network stack supports ICMP (Internet
 Control Message Protocol) which includes the PING service. Sites wishing
 to limit their visibility may disable PING responses.

SEE ALSO
 HELP Topics: IPCONFIG

ARP User Commands

NAME
 arp - Address Resolution Protocol

SYNOPSIS
 arp [OPTIONS] [IPADDR]

DESCRIPTION
 Communications over the local network use the fixed MAC addressing
 assigned by device manufacturers. The Address Resolution Protocol (ARP)
 helps us find the MAC address associated with the IP addresses that we
 give to local devices and computers. The ARP command displays the
 cached mappings.

 If IPADDR is specified the command displays the mapping for the IP
 address if known. Otherwise the entire database of active devices
 is displayed.

 -A IPADDR
 Issues an ARP request for IPADDR if not present in the cache.

 -D IPADDR
 Removes IPADDR from the cache. This forces the JNIOR to issue
 a new request when next attempting to contact the remote device.

 -S
 Scans the entire subnet displaying the IP addresses used by any
 computers or devices on the network. In addition to the IP address
 the listing shows the MAC address and other identification
 information. If the remote device is referenced in the JNIOR's
 network configuration its role is also indicated.

 The ARP -S command is useful in locating unused IP addressing.

SEE ALSO
 HELP Topics: IPCONFIG

 Page 96

NSLOOKUP User Commands

NAME
 nslookup - DNS Cache Utility

SYNOPSIS
 nslookup [OPTIONS] [DOMAIN]

DESCRIPTION
 When the JNIOR accesses a domain is must resolve the text into an IP
 address. An external DNS server provides the service and the results
 are caches for a period of time. This command displays the content of
 the cached database.

 If DOMAIN is provided the system attempt to resolve the domain.

 -D
 Deletes the specified domain from cache.

NOTES
 Domain addresses remain in the cache for 5 minutes.

SEE ALSO
 HELP Topics: IPCONFIG

NBTSTAT User Commands

NAME
 nbtstat - NetBIOS Name Resolution Status

DESCRIPTION
 Some systems can use NetBIOS Name Resolution to resolve Hostnames into IP
 addresses. The JNIOR supports this and it allows you to specify the JNIOR
 by its Hostname in the browser. The NBTSTAT command reports the registered
 NetBIOS naming for the unit.

NOTES
 Hostnames longer than 19 characters or that use forms of punctuation may
 not be compatible with this form of name resolution.

 By default all JNIORs are reachable using their "Birth Name". That being
 the unit's serial number with a "JR" prefix.

SEE ALSO
 HELP Topics: HOSTNAME

 Page 97

REBOOT User Commands

NAME
 reboot - Restart the JNIOR

SYNOPSIS
 reboot [OPTIONS]

DESCRIPTION
 This command reboots/restarts the JNIOR. This is required for an operating
 system (JANOS) update. The command terminates all processes in a controlled
 fashion bringing the system to a halt before restarting.

 -F
 Skips the confirmation prompt.

 -A
 Resets heap and system memory.

SEE ALSO
 HELP Topics: JRUPDATE

STATS User Commands

NAME
 stats - System status

SYNOPSIS
 stats [OPTIONS]

DESCRIPTION
 Displays various system information such as specific JANOS version and
 build. The Model, Serial Number and POR (Power On Reset) count are
 displayed as well as the current system uptime (time since boot).

 JANOS maintains record of the longest uptime achieved and an accumulation
 of time the product has been up and running. These are provided. A status
 for the various memory areas within the JNIOR is also displayed.

 -A
 This option resets the Attenion Status to 'All Clear'.

SEE ALSO
 HELP Topics: JRFLASH

 Page 98

MANIFEST User Commands

NAME
 manifest - File System Verification Utility

SYNOPSIS
 manifest [OPTIONS] [FILESPEC]

DESCRIPTION
 This command lists files and the output differs from the LS or DIR command
 in that a Message Digest which reflects the file content is calculated
 from each byte in the file and displayed. The default message digest
 is MD5. While the digest may be useful in comparing with an externally
 published value the benefit in the MANIFEST command is its ability to
 compare against a Reference Point (RefPoint).

 The FILESPEC parameter is typically not used. By default MANIFEST
 scans the entire file system but can be directed to evaluate a single
 file or set of files.

 The -U option (see below) generates the RefPoint which retains information
 about each and every file on the JNIOR. This is stored in the
 /manifest.json file and in a second backup copy of this JSON database
 located in /flash. When MANIFEST is subsequently run it compares the
 current status of a file against the RefPoint. Differences are reported
 and this can go a long way in helping the user understand what is changing
 on the JNIOR.

 The following are indications MANIFEST provides when differences are
 detected.

 [New] - File did not exist before. It is new.
 [Modified] - File has changed.
 [Missing] - File existed before and is no longer found.
 [Corrupt] - File content has changed but the timestamp has not.

 The following are displayed when updating the RefPoint.

 [Added] - File is new and added.
 [Updated] - File has changed and updated.
 [Removed] - File no longer exists and has been removed.

 Options:

 -U
 Update the RefPoint. The JSON database is overwritten.

 -L
 Only list differences.

 -C
 Report CRC32 instead of MD5.

 -H
 Report SHA1 instead of MD5.

 Page 99

 -S, -R
 Recurse sub-directories when the FILESPEC parameter is provided.
 FILESPEC can include the wildcards '*' and '?'.

 -A
 Include Hidden files and folders.

 -F REFPOINT
 This option instructs the MANIFEST command to use a custom reference
 point REFPOINT. Here you can specify another database location for
 this specific execution of the command. The default RefPoint will
 not be disturbed. You can use different RefPoint databases for different
 purposes.

NOTES
 Typical usage is to issue the MANIFEST -UL command at a point when you
 are confident in the status of the JNIOR. At a later time you can use the
 MANIFEST -L command to compare against the RefPoint. You will then know
 if any files have been lost or corrupted. Presumably those that are
 modified can be explained. Logs typically quickly become modified. You
 would also find out if any new files have appeared. Once satisfied
 you would update the RefPoint with another MANIFEST -UL.

SEE ALSO
 HELP Topics: LS, DIR, JSON

 Page 100

JRUPDATE User Commands

NAME
 jrupdate - JNIOR Update Utility

SYNOPSIS
 jrupdate [OPTIONS] UPDFILE
 jrupdate [OPTIONS] ZIPFILE
 jrupdate [OPTIONS] URL

DESCRIPTION
 The JNIOR firmware can be updated using the JRUPDATE command. This is
 used to update the operating system (JANOS). It is highly recommended
 that the latest version of JANOS be used. In many cases it is a
 prerequisite for continuing technical support.

 -U
 Prepare to update from the file UPDFILE. Typically a UPD file is
 obtained from INTEG and loaded into the /temp folder. This option
 readies the firmware for update upon reboot. The JanosClasses runtime
 is immediately updated.

 -P
 When used in combination with the -U option this causes the system
 to proceed with the reboot after preparing the UPDFILE.

 -F
 Skips the update confirmation and proceeds with the update.

 -C
 Cancels a prepared update. The firmware will not be updated upon
 reboot. Note that the JanosClasses runtime has been updated in the
 preparation and this may or may not cause issues pending the
 eventual firmware update.

 -R
 At the completion of a firmware update the prior version of the
 operating system remains stored. This option will revert the
 firmware to the original upon reboot. Note that the JanosClasses
 runtime is unaffected and may or may not cause issues with the
 older firmware. The -R option can be repeated to toggle between
 JANOS versions. There generally has been little or no need for
 this reversion option.

 -I
 Run installer. If a ZIPFILE is specified that contains a setup.bat
 batch file, it is executed to complete the steps involved in the
 installation.

 -G
 Downloads a files from the supplied URL into the /temp folder
 before proceeding with other options. This may load a UPD file or
 other installation file.

 Page 101

NOTES
 Typically updates are performed using the Support Tool and a supplied
 Update Project. Manually the firmware is updated by copying the UPD
 file to the /temp folder and executing the following command.

 jrupdate -fup /temp/longfilename.upd

 The TAB feature of the command line is useful in constructing this
 command in that you need not type the lengthy UPD file name.

 Product firmware update procedures typically warn against removing power
 during the procedure. JANOS performs a fault tolerant firmware exchange
 procedure that is unaffected by the loss of power. This also completes
 fairly quickly and won't keep you on the edge of your seat waiting.

SEE ALSO
 HELP Topics: TAB

 Page 102

PHOME User Commands

NAME
 phome - Phone Home Utility

SYNOPSIS
 phome [ACTIVATION KEY] [OPTIONS]

DESCRIPTION
 Beginning with JANOS v2.4 the JNIOR will support the INTEG Phone Home
 remote support service. This is an opt-in function that MUST be activated
 by the customer.

 The command will initiate a check-in which will simply register the JNIOR
 with the INTEG servers. An ACTIVATION KEY must be entered by the customer
 before any remote access can occur.

 ACTIVATION KEY
 If the subject JNIOR has Internet access, a temporary activation key may
 be obtained from INTEG Technical Support. Once activated INTEG (and only
 INTEG) will be able to securely access the JNIOR remotely. This may be
 very useful in debugging difficult issues or in supporting applications
 developed by INTEG for you. The activation key is valid typically for
 only a few hours.

 -D
 Deactivates an existing activation.

NOTES
 The JNIOR uses unicast Port 2900 for check-in. You may need to set firewall
 software to allow this port if you wish to take advantage of this service.
 Additional permissions may be required before the remote connection will be
 possible.

 By default INTEG cannot access your JNIOR without activation.

 Additional services may be available through future licensing.

SEE ALSO
 HELP Topics: support

 Page 103

JRFLASH User Commands

NAME
 jrflash - Flash File System (FFS) Utility

SYNOPSIS
 jrflash [OPTIONS]

DESCRIPTION
 Part of the JNIOR File System is retained in Flash Memory. This is the
 content of the /flash folder. This command displays the size of the
 Flash and the amount of remaining space.

 -C
 Displays statistics including the status of any cached data. The
 writes_per_minute statistic may be used as an indication as to how
 heavily the Flash is used. Flash components do have a finite life.

 -F
 Formats the FFS. You will need to confirm the action. All data will
 be lost. It is recommended that data be copied from the Flash first
 if possible. It can then be restored.

 -R
 Perform reclamation pass. Flash memory areas can be written once and
 then must be reclaimed before being used again. The FFS utilizes all
 of the available memory before reclaiming. The process is transparent
 and happens in the background. This option allows you to manually
 reclaim memory. This can greatly improve Flash performance in terms
 of the average write time.

 Page 104

Registry Configuration

OVERVIEW
 The JNIOR Automation Network Operating System (JANOS) and its applications
 can be configured to suit your needs. Configuration involves choices, and
 those settings may be stored in a variety of ways. JANOS relies on its
 Registry system for all operating system configuration. The Registry can
 also be easily used by applications and web pages for the storage of custom
 configuration settings. The Registry may also be used to store and share
 data dynamically.

 The JANOS Registry is non-volatile. Its content remains in place even when
 power is removed. Information is stored as a set of name-value pairs. Each
 entry is referenced by a unique Registry Key or name. Each entry contains
 information formatted as a character string representing its value. The
 content is available to JANOS directly, to external applications and web
 pages through protocols, and to local application programs through the
 JanosClasses.jar runtime library.

 JANOS maintains a backup copy of the Registry in the /flash/jnior.ini file.
 When content in the Registry is changed this INI file will later be updated
 to reflect the changes. This backup file is automatically generated and should
 not be overwritten or modified. JANOS performs this backup every several
 minutes as needed. The /flash/jnior.ini file may be read and saved as a
 representation of Registry content. This INI file will reflect changes only
 after the backup occurs. The backup is automatically performed on reboot.

 A copy of the /flash/jnior.ini file may be edited and saved under a
 different filename. This then may be ingested using the REG -I command as
 means a performing bulk configuration.

 All actions are logged to the jniorsys.log file providing an audit trail
 for configuration management.

SEE ALSO
 HELP Topics: REG

 Page 105

Access Configuration

USING THE REGISTRY
 Configuration is likely best performed using the Dynamic Configuration
 Pages (WebUI). Once the JNIOR is connected to the network the browser can
 be used to open the WebUI with the unit's IP address. The JNIOR is configured
 by default to open the WebUI. An administrator login is required to access
 the Registry.

 The 'Configuration' tab of the WebUI provides an organized form-oriented
 means for adjusting the various configuration settings. In this section you
 are provided with over a dozen different categories. These settings affect
 both how the JNIOR operates and how the WebUI displays information. Not all
 of the valid and useful Registry Keys are presented within this section but
 only the most common and appropriate settings for each category. Certain
 advanced settings will need to be made manually by a different means. The
 unit's Network configuration, for instance, may be easily adjusted here.

 The WebUI also provides a 'Registry' tab. This section shows the raw content
 of the Registry Keys in a form similar to a file explorer. Only those keys
 with values are shown. You can add, remove or edit any Registry Key using
 this tab. Here you are required to know specifically what key or keys you
 want to change. This is most appropriate for advanced administrators. This
 provides a graphical user interface for Registry Key management.

 The Console tab in the WebUI provides access to the JANOS Command Line
 Console. This is the same command line facility that can be accessed using
 a Terminal or Telnet application to open the standard Telnet port (port 23)
 over the network. Even in the absence of a network connection you may open
 the console by making a serial connection to the COM port located to the
 right of the Ethernet/LAN connection on the JNIOR.

 If you are working with a Windows based PC you may download and install
 the INTEG Support Tool. The installer is available from our website at

jnior.com . Once the Support Tool is opened the Beacon tab will
 display all of the JNIORs located on the current network segment. If you
 right-click any JNIOR the resulting context menu will provide access to
 the unit's WebUI, a Telnet application, and many other useful functions.
 The Support Tool also provides a Registry Editor tab through which you
 can add, remove and edit content as needed for the selected JNIOR.

SEE ALSO
 HELP Topics: WEBUI, REG

 Page 106

$BootTime Registry Key

NAME
 $BootTime

DEFAULT
 Generated by the system at boot.

DESCRIPTION
 This returns a string representing the time according to the JNIOR
 clock at the completion of the latest power-up boot sequence.

$Model Registry Key

NAME
 $Model

DEFAULT
 Generated by the system at boot.

DESCRIPTION
 This returns the product Model number. For example: “410”.

$SerialNumber Registry Key

NAME
 $SerialNumber

DEFAULT
 Generated by the system at boot.

DESCRIPTION
 This returns the product serial number as a String. For example:
 “612080001”.

$Version Registry Key

NAME
 $Version

DEFAULT
 Generated by the system at boot.

DESCRIPTION
 This returns the current Version string for the product release. For
 example: “v2.4”

 Page 107

$LastNtpSuccess Registry Key

NAME
 $LastNtpSuccess

DEFAULT
 Updated by the system.

DESCRIPTION
 This returns the last time the system clock was successfully updated from
 the network using the NTP protocol.

SEE ALSO
 HELP Topics: DATE

$BuildTag Registry Key

NAME
 $BuildTag

DEFAULT
 Generated by the system at boot.

DESCRIPTION
 This returns a tag uniquely defining the current OS build. These tags
 will increase with each new build and can be numerically compared.

$HdwStrapping Registry Key

NAME
 $HdwStrapping

DEFAULT
 Generated by the system at boot.

DESCRIPTION
 This returns a tag uniquely defining the hardware configuration of the
 circuit board in this unit. This varies by model and reflects the resources
 available to the operating system.

 Page 108

Device Registry Key

NAME
 Device/Desc

DEFAULT
 None

DESCRIPTION
 This key provides a textual description for this JNIOR. This might be
 displayed by the WebUI or applications as identification. JANOS will
 include this description as part of the default email signature if it
 is defined.

Device Registry Key

NAME
 Device/Timezone

DEFAULT
 UTC - Coordinated Universal Time

DESCRIPTION
 Specifies the local Timezone to be used in displaying date and time. The
 set of available Timezones may be viewed using the DATE -T command. This
 setting can be easily made using the DATE command followed by the
 appropriate Timezone abbreviation. For example DATE EST.

SEE ALSO
 HELP Topics: DATE

Device/ResetAction Registry Key

NAME
 Device/ResetAction

DEFAULT
 reboot -f

DESCRIPTION
 Specifies the action to be taken when the RESET switch is triggered. The
 JNIOR provides access to a 2-pin connector for an external Reset Switch.
 When a reset switch is momentarily activated (pins connected together)
 the command line command detailed by this Registry key is executed. By
 default this forces a reboot using the REBOOT -F command and performing
 a well-behaved controlled restart. Any command may be executed and it

 Page 109

 need not result in a restart. Note that this reset switch is also used
 to enter SAFE MODE when it is held through a reboot.

IpConfig/DHCP Registry Key

NAME
 IpConfig/DHCP

DEFAULT
 enabled

DESCRIPTION
 When enabled the JNIOR will lease an IP address from a DHCP server if
 available on the network. This insures that the JNIOR is compatible
 with the network.

NOTES
 ipconfig -d
 Enables DHCP using the IPCONFIG command. Sets this key to enabled.

 ipconfig -r
 Disables DHCP and releases any leased IP address. Sets this key to
 disabled.

SEE ALSO
 HELP Topics: IPCONFIG

IpConfig/IPAddress Registry Key

NAME
 IpConfig/IPAddress

DEFAULT
 10.0.0.201 (if DHCP not enabled)

DESCRIPTION
 This defines a fixed network IP Address to be used with this JNIOR. The
 address may be defined using this Registry key or by using the IPCONFIG
 command. The Registry change takes effect on reboot. Use IPCONFIG to make
 immediate changes.

 The JNIOR queries for IP address conflicts when establishing its address.
 If another device responds to the IP address defined here, the unit will
 log the issue and temporarily adopt an IP address of 0.0.0.0.

SEE ALSO
 HELP Topics: IPCONFIG, DHCP

 Page 110

IpConfig/SubnetMask Registry Key

NAME
 IpConfig/SubnetMask

DEFAULT
 255.255.255.0

DESCRIPTION
 This defines the network Subnet Mask to be used with this JNIOR. The
 mask may be defined through changes to this Registry key or by using
 the IPCONFIG command. Changes take effect on reboot. Use IPCONFIG to
 make immediate changes.

SEE ALSO
 HELP Topics: IPCONFIG, IPADDRESS

IpConfig/GatewayIP Registry Key

NAME
 IpConfig/GatewayIP

DEFAULT
 0.0.0.0

DESCRIPTION
 This defines the network Gateway IP Address. This address is only required
 if JNIOR is to communicate outside its home network. This would be the
 case if JNIOR is to synchronize its clock with an external time server as
 is the default. Changes take effect on reboot. Use IPCONFIG to make
 immediate changes. This key is ignored when DHCP is enabled.

SEE ALSO
 HELP Topics: IPCONFIG

 Page 111

IpConfig/PrimaryDNS Registry Key

NAME
 IpConfig/PrimaryDNS

DEFAULT
 0.0.0.0

DESCRIPTION
 This defines the Primary DNS Address used for name resolution on the network.
 This would be required if JNIOR is to synchronize its clock with an external
 time server as DNS is used to resolve “pool.ntp.org” into the appropriate
 IP Address for communication. Changes take effect on reboot. Use IPCONFIG
 to make immediate changes. This key is ignored when DHCP is enabled.

SEE ALSO
 HELP Topics: IPCONFIG

IpConfig/SecondaryDNS Registry Key

NAME
 IpConfig/SecondaryDNS

DEFAULT
 0.0.0.0

DESCRIPTION
 This defines the Secondary DNS Address used for name resolution on the
 network should the Primary DNS not be available. Changes take effect on
 reboot. Use IPCONFIG to make immediate changes. This key is ignored when
 DHCP is enabled.

SEE ALSO
 HELP Topics: IPCONFIG

 Page 112

IpConfig/HostName Registry Key

NAME
 IpConfig/HostName

DEFAULT
 The default is the 9-digit serial number with a "jr" prefix in the
 form "jrNNNNNNNNN". This is known as the unit's "Birth Name".

DESCRIPTION
 This defines a Hostname for the device. This name appears in many places.
 It will be listed as identification in the Beacon tab of the Support Tool.
 It is used as the command line console prompt. The name may be used in a
 URL to access the JNIOR if it is on the local network. It is noted in the
 default signature when emails are sent.

 JANOS allows the Hostname to be defined as just about anything. However,
 it is recommended that it not exceed 15 characters in length and use only
 alphanumeric characters. You can use underscore '_' and dash '-' if
 necessary. These limitations allow the Hostname to be properly used to
 access the unit over the network using NetBios.

 The default Hostname will always be available for network access in addition
 to any alternative defined by this key. A short name is also best for the
 command line prompt.

NOTES
 This can be easily set using the HOSTNAME command.

SEE ALSO
 HELP Topics: HOSTNAME

IpConfig/Domain Registry Key

NAME
 IpConfig/Domain

DEFAULT
 jnior.local

DESCRIPTION
 Defines the Domain Name associated with the local network. In general you
 can usually leave this as the default. It is supplied with email transfers.
 You may need to use a valid domain in order to satisfy requirements for
 passing spam filters.

 Page 113

IpConfig/MailHost Registry Key

NAME
 IpConfig/MailHost

DESCRIPTION
 This specifies the address of the SMTP Mail Server that accepts email for
 the defined email account. This must be specified if JNIOR is going to send
 email messages. Changes take effect on reboot. Use IPCONFIG to make
 immediate changes.

SEE ALSO
 HELP Topics: IPCONFIG, SENDMAIL

IpConfig/Username Registry Key

NAME
 IpConfig/Username

DESCRIPTION
 Specifies the Username required for SMTP Authentication. This may or may not
 include the domain as this depends on the requirements of the particular
 server. SMTP Authentication is used ONLY when a MailHost is defined and when
 both the Username and Password keys are valid.

 The Username must be entered through the WebUI or by the IPCONFIG command.
 Upon entering or re-entering the Username a Password will be requested and
 confirmed. The password must be encrypted by the system before it is saved.
 This cannot be done manually.

SEE ALSO
 HELP Topics: IPCONFIG, SENDMAIL

IpConfig/Password Registry Key

NAME
 IpConfig/Password

DESCRIPTION
 This cannot be successfully updated manually.

 This key specifies the Password required for SMTP Authentication. The
 password is encrypted in the Registry and is not displayed by the JNIOR.
 The login credentials must be entered using the WebUI or IPCONFIG command
 by first entering or reentering the Username. Each JNIOR has its own unique
 encryption key and therefore passwords cannot be copied through INI file
 transfer. SMTP Authentication is used ONLY when a MailHost is defined and
 when both the Username and Password keys are valid.

SEE ALSO
 HELP Topics: IPCONFIG, SENDMAIL

 Page 114

IpConfig/EmailAddress Registry Key

NAME
 IpConfig/EmailAddress

DESCRIPTION
 Specifies the email address used as the FROM address in sending email. This
 email address should be valid and the one associated with the email account
 having the defined Username and Password. This address appears as the
 sender in most communications. It is also placed in SSL certificates to
 refer to the device Owner.

SEE ALSO
 HELP Topics: IPCONFIG, SENDMAIL

IpConfig/DNSTimeout Registry Key

NAME
 IpConfig/DNSTimeout

DEFAULT
 5000 milliseconds (5 seconds)

DESCRIPTION
 This defines the timeout in milliseconds to be used in waiting for a
 response from configured DNS servers.

SEE ALSO
 HELP Topics: IPCONFIG

IpConfig/NTPServer Registry Key

NAME
 IpConfig/NTPServer

DEFAULT
 pool.ntp.org

DESCRIPTION
 JNIOR can synchronize with a network time server supporting Network Time
 Protocol (NTP). To utilize this capability JNIOR must be properly configured
 for a network with access to an NTP server. The NTPServer key defines the
 server using either a domain name or an IP address. An optional parameter
 may be used to define an alternate port. The format is as follows:

 IpConfig/NTPServer = ServerAddress [, ServerPort]

 Page 115

 Another typical server address is 'time.nist.gov' and you may define a local
 NTP server. The standard NTP port number is 123. You may optionally specify
 a custom port number following the ServerAddress separated by a comma.

 Only one server can be specified. If that server is not available then the
 synchronization will be bypassed. Note that the clock is maintained by a
 battery during periods without power. Synchronization is not required but
 useful periodically as the clock will drift in accuracy over long periods.
 Typical computer hardware clocks (PCs for instance) typically drift by
 several seconds per day. NTP synchronization is critical in maintaining
 accurate time.

NOTES
 Time synchronization occurs during boot. Synchronization is attempted every
 four hours by default to maintain clock alignment. JNIOR may also be
 commanded to synchronize using the DATE -N command in the Command Console.

 Proper network configuration including Gateway and DNS Server is required
 unless a local NTP server is used.

 The default 'pool.ntp.org' domain supplies an NTP server from a large pool of
 servers. It is highly likely that a different server will be selected for
 each synchronization. If the supplied server does not respond the
 synchronization will be retried a few times. Beginning with JANOS v2.4 the
 retry will occur 5 or so minutes later giving time for the DNS entry to
 expire and thereby fetching a new NTP server that might be ready to assist
 you.

SEE ALSO
 HELP Topics: DATE, IPCONFIG

IpConfig/NTPUpdate Registry Key

NAME
 IpConfig/NTPUpdate

DEFAULT
 240 (minutes)

DESCRIPTION
 JNIOR attempts to synchronize with a network time server every 4 hours (240
 minutes) by default. The update period may be adjusted through this Registry
 key. This defines the period in minutes and can be set for any amount of
 time 5 minutes or longer. To disable NTP synchronization you can set this
 key to 0. This configuration setting takes effect on boot.

 With JANOS v2.4 or later changes to this key take effect immediately. An NTP
 synchronization will occur and the next will be scheduled based upon the
 newly defined period.

SEE ALSO
 HELP Topics: DATE, IPCONFIG

 Page 116

IpConfig/MTU Registry Key

NAME
 IpConfig/MTU

DEFAULT
 1500 (bytes)

DESCRIPTION
 This Registry key defines the maximum size of packets transmitted over the
 Ethernet port. The Maximum Segment Size (MSS) is defined as MTU - 40 (40
 bytes less than the MTU setting) and no packet will be transmitted with a
 payload exceeding this size. Regardless of the MTU setting JNIOR will
 properly receive packets of any size up to the standard network MTU of 1500.
 The product ignores Jumbo packets upon their arrival.

 Valid MTU settings are 400 to 1500 inclusive. A change in MTU setting
 applies to all Ethernet connections and takes effect upon reboot.

NOTES
 MTU issues are generally a thing of the past. It is unlikely that you will
 need to change this setting.

IpConfig/TTL Registry Key

NAME
 IpConfig/TTL

DEFAULT
 128 (hops)

DESCRIPTION
 The IpConfig/TTL Registry key defines the lifespan of a network packet. The
 time-to-live value is a kind of upper bound on the time that an IP datagram
 can exist in the Internet system. The value is reduced with the passage
 through a router (a hop). If it reaches 0 the packet is discarded.

 The TTL setting can be considered to limit the maximum radius (in terms of
 hops) of the network within reach of the JNIOR. The default setting should
 allow packets to reach the far end of the globe. A low setting would limit
 access to the unit as only those in the local vicinity could communicate with
 it. In this respect the TTL setting can be used to improve device security.

 A very low setting of 1 or 2 would constrain the JNIOR to the immediate
 network. One must consider the need to reach Doman Name Servers (DNS) and
 Network Time Servers (NTP). There may also be the requirement for email
 transfers wherein the JNIOR needs to reach out to a SMTP Server. To help
 determine the minimum setting you may be able to use your PC's TRACERT
 command to detect the hop count involved in reaching those destinations.
 The JNIOR does not support a route tracing function.

 Page 117

IpConfig/SyslogServer Registry Key

NAME
 IpConfig/SyslogServer

DEFAULT
 None

DESCRIPTION
 This defines the address of a Syslog Server that accepts System Log
 messages. This may be optionally specified to remotely log system
 status messages. This is typically the information found in the
 jniorsys.log file. Changes take effect immediately. The format for
 the IpConfig/SyslogServer key is as follows:

 IpConfig/SyslogServer = ServerAddress [, ServerPort]

 By default the ServerAddress is not set and no SYSLOG transmissions occur.
 You can set the ServerAddress through the IPCONFIG -L command syntax. The
 standard Syslog port number is 514. You may optionally specify a custom port
 number following the ServerAddress separated by a comma. This must be
 accomplished through the WebUI or by setting the Registry key directly. If
 you set the SYSLOG server address using the IPCONFIG command the default
 port will be used.

 Typically SYSLOG postings reflect the jniorsys.log entries. You
 may post manually to the system log file using the LOGGER command or
 directly to the SYSLOG server with the LOGGER -R syntax. Applications may
 also optionally post directly to the syslog server.

 JANOS will allow you to configure a broadcast address (255.255.255.255).
 This may be helpful if you want to support multiple SYSLOG destinations or
 monitor postings to an existing SYSLOG server.

SEE ALSO
 HELP Topics: LOGGER

 Page 118

IpConfig/Keepalive/Time Registry Key

NAME
 IpConfig/Keepalive/Time

DEFAULT
 300 (seconds)

DESCRIPTION
 This is the timeout in seconds before JANOS will probe a connection. By
 default it is set to 5 minutes (300 seconds). A connection will be probed if
 there has not been packet traffic from the peer in the configured time
 period.

IpConfig/Keepalive/Interval Registry Key

NAME
 IpConfig/Keepalive/Interval

DEFAULT
 30 (seconds)

DESCRIPTION
 If there is no response from a probe JANOS will retry after the configured
 interval. By default this is 30 seconds.

IpConfig/Keepalive/Retry Registry Key

NAME
 IpConfig/Keepalive/Retry

DEFAULT
 8

DESCRIPTION
 Specifies the number of keep alive retries attempted. By default JANOS will
 retry the probe 8 times before closing the connection.

 Page 119

IpConfig/Socket/ConnectTimeout Registry Key

NAME
 IpConfig/Socket/ConnectTimeout

DEFAULT
 5000 (milliseconds)

DESCRIPTION
 By default socket connections initiated by an application will time out
 after 5 seconds and generate an IOException. This define the time in
 milliseconds.

IpConfig/CaptureBuffer Registry Key

NAME
 IpConfig/CaptureBuffer

DEFAULT
 512 (KB)

DESCRIPTION
 The JNIOR by default allocates 512KB of memory for network capture. If
 network traffic needs to be analyzed, the NETSTAT FC command is used to
 generate a PCAPNG capture file which can be downloaded and opened with the
 Wireshark network protocol analyzer https://www.wireshark.org . This means
 that there is always recent network history available for capture. The
 default 512KB can represent minutes or even hours of network operation
 depending on the amount of network use. Only packets involving the JNIOR
 are captured. This packet buffer can be increased using this Registry key
 and can be set for any number KB between 512 and 8192 (8MB Maximum).

 This Registry key setting takes effect only on reboot.

NOTES
 the capture buffer is volatile and records network activity while the unit
 remains powered. The content survives a reboot but is reset when power is
 removed. The NETSTAT -R command will also reset the capture buffer.

 If the network capture is not covering a long enough period of time, we
 recommend first using a capture filter to limit the content to pertinent
 activity before increasing the buffer. An extremely large PCAPNG file can
 be difficult to upload and process. Similarly the NETSTAT -C command
 can include a capture filter moving only those packets of interest to the
 capture file.

SEE ALSO
 HELP Topics: FILTERING, NETSTAT

 Page 120

IpConfig/Promiscuous Registry Key

NAME
 IpConfig/Promiscuous

DEFAULT
 disabled

DESCRIPTION
 By default the network capture collects packets that specifically reference
 either the JNIOR’s MAC address or IP address either as the source or
 destination. This then excludes general broadcasts and any other unrelated
 network traffic that the unit may see.

 If you need to see all of the network traffic set this Registry key to
 "enabled". This will enable Promiscuous Mode and the capture of all
 network traffic that reaches the JNIOR. Note that changes in this setting
 do not require a reboot and take effect immediately.

 Network switches and routers generally optimize network traffic and
 present devices with the subset of communications that are specifically
 addressed for that destination. In Promiscuous Mode you will generally
 receive additional broadcast packets and packets addressed to other possibly
 non-existing devices which the switch or router has yet to locate and filter.

NOTES
 The network hub has been obsoleted by the network switch as traffic and
 bandwidth optimization is a good thing. However the older technology in the
 hub may be desirable if you need to analyze communications between two
 other devices. The hub forwards all network traffic to all interconnected
 devices. The JNIOR in Promiscuous Mode can then capture packet traffic
 between the other devices. This may be very useful in debugging larger
 multi-device systems. If you own a hub you should hang onto it as it can
 be a useful debugging tool when used as a temporary network switch
 replacement.

SEE ALSO
 HELP Topics: FILTERING, NETSTAT

 Page 121

IpConfig/CaptureFilter Registry Key

NAME
 IpConfig/CaptureFilter

DEFAULT
 None

DESCRIPTION
 The network traffic can be filtered prior to the capture buffer. This can
 extend the period over which traffic can be collected by limiting the
 content to only those connections or communications of interest. The syntax
 used to define a capture filter utilizes logical operations such as NOT,
 AND, OR and XOR. The filter can include references to MAC addresses,
 IP addresses (IPv4), and TCP/IP or UDP port numbers. Matters of operation
 precedence can be handled through the use of parenthesis groups. By default
 the network capture is not filtered.

 The NETSTAT -F command should be used to set the incoming filter. This
 command first verifies the filter syntax and if no errors are found it
 then sets the Registry key. This is the preferred method in that it includes
 the syntax check.

 The filter setting takes effect immediately and does not require a reboot.
 An incoming capture filter is non-volatile and will remain in use. To remove
 the filter you must either remove the Registry key or issue the NETSTAT -F
 command without further arguments.

NOTES
 In a similar fashion packets can be selected from the network capture buffer
 in creating the PCAPNG file /temp/network.pcapng . The filter syntax is the
 same. You can therefore use the NETSTAT -C command to prototype and test a
 packet filter before using it to define the incoming filter.

SEE ALSO
 HELP Topics: FILTERING, NETSTAT

 Page 122

IpConfig/ShowPass Registry Key

NAME
 IpConfig/ShowPass

DEFAULT
 disabled

DESCRIPTION
 Failed Console login attempts, which are failed Telnet login attempts, are
 logged to the access.log file. This port is a favored target for those
 seeking malicious access to a device. The log entry shows the remote IP
 address attempting entry along with the username. When this Registry key is
 enabled the password tried is also displayed. It is not recommended that
 this feature be used at length since a typographic error by a legitimate
 user might reveal the user's password by logging it. This is useful in
 determining the source of the activity. Bots repeatedly use a sequence of
 common passwords from a dictionary. A bad actor familiar with the JNIOR
 would try default passwords. You may wish to know if someone is specifically
 trying to attack your JNIOR.

IpConfig/LLMNR Registry Key

NAME
 IpConfig/LLMNR

DEFAULT
 disabled

DESCRIPTION
 You can access the JNIOR using the unit's Hostname. The process required to
 convert the text name into the IP address needed to locate the JNIOR on the
 network is called Name Resolution . A computer might utilize a local DNS
 server or attempt a NetBIOS name query to do this. An alternative is
 Link-Local Multicast Name Resolution (LLMNR). This has not been adopted as
 an IETF standard. The JNIOR is capable of performing LLMNR and the feature
 can be enabled by this Registry key.

 LLMNR is disabled by default as some systems currently consider it unsafe.
 When attempting to resolve a name it may be possible for a malicious system
 to offer an incorrect IP address and thereby intercept communications. At
 that point a login might be requested and your credentials stolen.

SEE ALSO
 HELP Topics: NBTSTAT, HOSTNAME

 Page 123

IpConfig/NetBIOS Registry Key

NAME
 IpConfig/NetBIOS

DEFAULT
 enabled

DESCRIPTION
 You can access the JNIOR using the unit's Hostname. The process required to
 convert the text name into the IP address needed to locate the JNIOR on the
 network is called Name Resolution . Most computers will attempt to utilize
 NetBIOS in resolving a name. By default the JNIOR supports this method. You
 may need to specifically enable it on some Linux based machines. This
 Registry key can be used to disable the NetBIOS service.

 The NBTSTAT command displays the current NetBIOS status for the JNIOR. Note
 that the unit registers the Hostname and the default name which is "jr"
 combined with the Serial Number (jr615010258 for instance). The latter is
 considered to be the unit's Birth Name. Only the first 15 alphanumeric
 characters of the current Hostname are used and the default Birth Name is
 always available. You can use these names in addition to the IP address to
 reach the JNIOR.

NOTES
 When DHCP is enabled the assigned IP address may remain stable for a long
 time but it is subject to change. Access using the Hostname will avoid loss
 of connectivity.

SEE ALSO
 HELP Topics: HOSTNAME, NBTSTAT

 Page 124

IpConfig/Allow Registry Key

NAME
 IpConfig/Allow

DEFAULT
 None

DESCRIPTION
 This Registry key defines filtering to be applied to incoming connection
 requests. This uses the network capture filter syntax. This not only provides
 for the ability to specify IP addresses that are allowed to connect to the
 JNIOR but gives you the flexibility to block IP addresses. This includes
 domain ranges and destination ports. This filter can be used to not only
 control who can access the unit, it can also be used to define what they
 can access.

 Care must be exercised in setting this key remotely. If the capture filter is
 improperly defined you may prevent your own access. Doing so will require
 that you subsequently access the unit through the serial COM port and correct
 the key through the Command Console.

SEE ALSO
 HELP Topics: FILTERING, SAFEMODE

SSL/Enabled Registry Key

NAME
 SSL/Enabled

DEFAULT
 true

DESCRIPTION
 Controls the ability to make TLS secured connections. When set to FALSE
 this disables the Secure Web Server on Port 443 (HTTPS); Removes the ability
 to upgrade a JNIOR Protocol, JMP Protocol, FTP and Telnet connections to the
 secured state (disables STARTTLS); And, disables the routine Security Update
 procedure which otherwise is run to update keys.

 The CERTMGR command remains fully functional. Security keys and certificates
 may still be managed while the ability to make secure connections is disabled.
 This setting takes effect upon reboot.

SEE ALSO
 HELP Topics: CERTMGR

 Page 125

SSL/Required Registry Key

NAME
 SSL/Required

DEFALUT
 false

DESCRIPTION
 When TRUE this forces the use of SSL secured connections. No web services are
 provided on Port 80 (HTTP). All FTP sessions must be secured through the
 STARTTLS mechanism. The JNIOR Protocol, JMP Protocol and Telnet connections
 will close should data be received before the connections are secured. This
 setting takes effect upon reboot. It is ignored if SSL/Enabled is set to
 FALSE.

Authentication Security

BASIC AUTHENTICATION
 Access to the JNIOR is password controlled. All protocols provide for a means
 of login which requires the entry of a username and password. If those
 connections are not secure (such as standard browser access using HTTP as
 opposed to HTTPS) then both the username and password may be transferred in
 clear text. These are easily compromised by the simplest of techniques.

 To insure security, you MUST be sure that ALL protocols are set to require
 password authentication. Otherwise, even when SSL secure connections are made
 anyone will be able to alter and/or control your JNIOR.

 Not all protocols that are typically used in the industry provide for a
 standard means of password authentication. MODBUS is an example of this. The
 JNIOR does extend these protocols providing such a means but this must be
 specifically enabled through this Registry and may require changes to the
 connecting client.

SEE ALSO
 HELP Topics: DEFAULT_ACCOUNTS

 Page 126

Authentication Security

DEFAULT CREDENTIALS
 Even with care to use both secure connections and password authentication the
 JNIOR may be easily compromised if the default user accounts are not removed
 or given unique strong passwords. Surprisingly a large percentage of JNIORs
 are left with the default user accounts. A common oversight is to change the
 password on the 'jnior' administrator account while leaving the secondary
 'admin' administrator account active and with default credentials.

 To insure security, you MUST remove any unused user accounts and change the
 passwords from their defaults on remaining accounts.

 The JNIOR may be supplied with two (2) default administrator accounts 'jnior'
 and 'admin', a default 'user' account and a default 'guest' account. The
 default passwords are simply the usernames. JANOS command line functions
 provide for user management. Use the PASSWD command to alter passwords from
 their defaults. Use the USERMOD command to disable unused accounts or the
 USERDEL command to remove accounts. The USERS command is used to list the
 defined users.

 jr615010258 /> users
 admin 3 Administrator
 guest 0
 jnior 1 Administrator
 user 2 Control

 jr615010258 />

 Users typically rely on the 'jnior' account for administration. It is
 recommended that you remove the 'admin' account. The Support Tool defaults
 to the 'jnior' account. The 'guest' account should also be disabled using
 the USERMOD +D command.

SEE ALSO
 HELP Topics: USERS, USERDEL, USERMOD, PASSWD

 Page 127

Users/IgnoreDefault Registry Key

NAME
 Users/IgnoreDefault

DEFAULT
 false

DESCRIPTION
 The JNIOR comes with two (2) default Administrator accounts. These are the
 'jnior' and 'admin' accounts whose default passwords are 'jnior' and
 'admin' respectively. This represents a significant security risk if either
 account is left active with the default password. Users often alter the
 'jnior' account password but neglect to adjust the 'admin' account or vice
 versa. Periodically JANOS will post a warning to the jniorsys.log file if
 either default account is determined to still be using the default password.

 If you do forget your administrator password(s), the SAFE_MODE access
 procedure may be used to regain control of your JNIOR. You can then assign
 a new password.

 If you are comfortable with the risk and would like to continue to use the
 default accounts and passwords, you can eliminate the warnings by setting
 this Registry key to TRUE.

SEE ALSO
 HELP Topics: DEFAULT_ACCOUNTS, SAFEMODE

 Page 128

Public/Private Key Pair Registry Key

OVERVIEW
 Secure communications require RSA keys. 1024-bit or 2048-bit key lengths are
 typically used today. Longer keys are usually required to protect highly
 sensitive information and to increase protection as the computer capacity to
 break (determine the private key associated with a published public key)
 increases. The JNIOR control is not intended for use in extremely secure
 environments and its processing capabilities limit it to a maximum 1024-bit
 key pair.

 As shipped the JNIOR is factory configured with a standard 512-bit key. At
 some point if SSL remains enabled and the JNIOR is connected to an active
 network, JANOS will initiate the 'Security Update' process. This will
 generate a unique 1024-bit key replacing the default. This procedure will
 take an hour or more to complete during which time the JNIOR remains fully
 functional. This can also be interrupted and restarted as you need.

 The RSA Key or key pair is required to establish encrypted SSL/TLS
 communications. It is the two-part key, with a private part and a public
 part, that allows two parties to privately exchange information. The key pair
 is used in creating a Certificate that not only conveys the public part of
 the key to others but serves as device authentication. Certificates are
 digitally signed using the RSA key. By default the JNIOR creates, and
 self-signs, its own Certificate. The CERTMGR -V command can be used to verify
 the current RSA Key and Certificate.

 jr615010258 /> certmgr -v
 1024-bit key pair verifies
 private key operation requires about 4.0 seconds
 certificate:
 Issuer O=INTEG Process Group, OU=JNIOR Controllers, CN=jr615010258
 Subject O=INTEG Process Group, OU=JNIOR Controllers, CN=jr615010258
 is self-signed
 valid with current key pair

 jr615010258 />

 As can be seen from this, RSA operations are time-consuming. Security
 calculations are designed to be so. It is the effort in performing the
 calculations that makes it extremely difficult for others to attempt to
 decode the private part of the key. You rely on this. Fortunately, the RSA
 calculation is performed only once in setting up a secure connection to
 convey a unique one-time shared secret that the two parties will then use
 to efficiently encrypt and decrypt their communications.

 The CERTMGR command may also be used to install an externally generated RSA
 key pair. This is limited to a 1024-bit key length. The Security Update
 process will not overwrite an externally loaded key pair. JANOS can work
 with keys up to 4096-bit should that be in use by the remote party seeking
 connection. The CERTMGR command also allows you to install and manage an
 externally generated Certificate.

SEE ALSO
 HELP Topics: CERTMGR

 Page 129

SSL Certificates Registry Key

OVERVIEW
 A TLS secured communications channel requires both the RSA key pair and a
 SSL Certificate. The CERTMGR command may be used to install an externally
 generated and signed SSL Certificate that must be associated with the
 separately installed RSA key pair. Typically the internally generated key
 pair and certificate are sufficient.

 A secure connection to the JNIOR may be flagged by browsers as 'NOT SECURE'
 or 'UNSAFE'. This is only because the the JNIOR's self-signed Certificate
 has not been obtained from any of the approved Certificate Authorities. The
 Certificate may be labeled as 'INVALID'. You may rest assured that the
 connection is still fully encrypted and 'PRIVATE'.

 In the absence of a loaded SSL Certificate, JANOS will generate a
 self-signed certificate using the current RSA key pair. Registry keys are
 provided which allow you to customize the information provided in this
 certificate. Since self-signed certificates are not generally recognized
 as trusted by browsers, users will be confronted by a standard warning.
 The information in the certificate may be configured so your users may
 recognize the device and decide on their own to accept the connection. The
 default values provide for a fully functional connection.

 The CERTMGR command may also be used to export the internally generated
 Certificate. The resulting file may be imported into your computer's Trusted
 Certificate Store. With this step the browser, recognizing a now trusted
 certificate, will show a secured connection using a symbol such a lock.

SEE ALSO
 HELP Topics: SSL/Cert/C, RSA_KEYS, CERTMGR

SSL/Cert/C Registry Key

NAME
 SSL/Cert/C

DEFAULT
 None

DESCRIPTION
 This text string defines the Country in which the JNIOR is located. By
 default this field is not included in the internally generated self-signed
 certificate.

SEE ALSO
 HELP Topics: SSL/Cert/ST, CERTMGR

 Page 130

SSL/Cert/ST Registry Key

NAME
 SSL/Cert/ST

DEFAULT
 None

DESCRIPTION
 This text string defines the State in which the JNIOR is located. Generally
 this is not an abbreviation. By default this field is not included in the
 internally generated self-signed certificate.

SEE ALSO
 HELP Topics: SSL/Cert/L, CERTMGR

SSL/Cert/L Registry Key

NAME
 SSL/Cert/L

DEFAULT
 None

DESCRIPTION
 This text string defines the Locality, City or Town. By default this field
 is not included in the internally generated self-signed certificate.

SEE ALSO
 HELP Topics: SSL/Cert/O, CERTMGR

SSL/Cert/O Registry Key

NAME
 SSL/Cert/O

DEFAULT
 INTEG Process Group

DESCRIPTION
 This text string defines the Organization. This field is included in the
 internally generated self-signed certificate.

SEE ALSO
 HELP Topics: SSL/Cert/OU, CERTMGR

 Page 131

SSL/Cert/OU Registry Key

NAME
 SSL/Cert/OU

DEFAULT
 JNIOR Controllers

DESCRIPTION
 This text string defines the Organizational unit, Division, Department or
 other. Here we take the opportunity to identify the device. This field is
 included in the internally generated self-signed certificate.

SEE ALSO
 HELP Topics: SSL/Cert/CN, CERTMGR

SSL/Cert/CN Registry Key

NAME
 SSL/Cert/CN

DEFAULT
 Hostname

DESCRIPTION
 This text string defines the Common Name or FQDN. For the proper operation
 of the web site this should reflect the domain in the URL used to reach the
 JNIOR.

 Since in addition to the hostname you may address your JNIOR using its IP
 address or default hostname ('jr' with serial number), the certificate must
 be made a bit more general. This is accomplished by including the Subject
 Alternate Name extension. This extension adds the IP address (both in binary
 and text forms), the hostname, and the default hostname ('jr' with serial
 number) to every certificate.

SEE ALSO
 HELP Topics: CERTMGR

 Page 132

SSL/Cert/SAN Registry Key

NAME
 SSL/Cert/SAN

DEFAULT
 List of Hostname, Birth Name and IP Address

DESCRIPTION
 Certificates are expected to be created for specific domains and should
 match the URL used to access the unit. The Common Name or FQDN is by default
 defined to be the hostname for the JNIOR. Additional identities are included
 in every certificate. This is accomplished using the Subject Alternate Name
 extension. This extension adds the IP address (both in binary and text
 forms), the hostname (if not the defined Common Name), and the default
 hostname ('jr' with serial number) to every certificate.

 If you also want to access the unit using different domain names you can
 add additional DNS names using this Registry key. One or more names may be
 added using comma (,) separated list. These will also appear in the
 Subject Alternative Name extension. Note that you will need to regenerate
 your certificate if you make changes to SSL/Cert keys. Use the CERTMGR -C.

SEE ALSO
 HELP Topics: SSL/Cert/E, SSL/Cert/CN, CERTMGR

SSL/Cert/E Registry Key

NAME
 SSL/Cert/E

DEFAULT
 None

DESCRIPTION
 This text string defines the contact email address. By default this will
 use the email address defined by IpConfig/EmailAddress . If neither key
 defines an email address then this field is omitted from the internally
 generated certificate.

SEE ALSO
 HELP Topics: SSL/Cert/Days, IpConfig/EmailAddress, CERTMGR

 Page 133

SSL/Cert/Days Registry Key

NAME
 SSL/Cert/Days

DEFAULT
 730 (days)

DESCRIPTION
 This integer defines the length in days of the period during which the
 certificate is considered valid. This starts on the date when the certificate
 is generated or regenerated. By default this is 730 days (2 years). As
 expiration draws near an internally generated certificate will be
 automatically renewed for an additional period.

 An internally generated Certificate is regenerated automatically when it
 expires, the Hostname is changed, or the unit's IP address changes.

 If you export the certificate to install in a Trusted Certificate Store,
 you will need to repeat that procedure when the certificate renews. You
 may elect to use a much longer period with this Registry key.

SEE ALSO
 HELP Topics: SSL/Cert/SHA1, HOSTNAME, CERTMGR

SSL/Cert/SHA1 Registry Key

NAME
 SSL/Cert/SHA1

DEFAULT
 false

DESCRIPTION
 The SHA1 cryptographic hash function is no longer considered to be secure.
 It remains secure for most of the world but those with sufficient resources
 are assumed now to be capable of breaking it. The JNIOR now uses the SHA256
 algorithm (SHA2). You can disable use of SHA2 if you need to communicate
 securely with legacy systems. This is achieved by setting this key to TRUE.

 As with most of the settings in this category, changes take effect when the
 certificate is regenerated.

SEE ALSO
 HELP Topics: CERTMGR

 Page 134

Events/Services Registry Key

NAME
 Events/Services

DEFAULT
 enabled

DESCRIPTION
 JNIOR monitors events and responds to certain situations depending on the
 configuration established by the Registry. JNIOR also can generate an audit
 trail of events and otherwise routinely log changes in data. By default
 these services are available.

 Application program startup at boot and email notifications are considered
 to be EVENTS and are affected by this Registry key. It is recommended that
 individual events be disabled if necessary as opposed to this setting.

 This Registry key can be used to completely disable all such services. A
 setting of disabled will stop processing without affecting the event
 configuration. This key takes effect immediately in some cases and a reboot
 generally stops all services.

SEE ALSO
 HELP Topics: Events/OnBoot

Events/OnBoot Registry Key

NAME
 Events/OnBoot

DEFAULT
 enabled

DESCRIPTION
 This key can be used to globally enable or disable the activities performed
 at startup (boot). If set to disabled this will globally disable the startup
 actions. This includes the running of applications defined by Run keys and
 the boot email notification.

SEE ALSO
 HELP Topics: Events/OnBoot/Email

 Page 135

Events/OnBoot/Email Registry Key

NAME
 Events/OnBoot/Email

DEFAULT
 disabled

DESCRIPTION
 When enabled this instructs JNIOR to send an Email Notification on Boot.
 This requires that the JNIOR be properly configured for the network with
 access to an SMTP Email Server. The IpConfig/MailHost must be configured
 defining that Email Server. The correct username and password for logging
 into the Email Server must have been set using either the WebUI or IPCONFIG
 command. The account owner's Email Address must be properly defined by the
 IpConfig/EmailAddress key. The email capability can be tested from the
 command line using the SENDMAIL command.

 The Boot Notification email can be fully customized. The default message is
 relatively simple and conveys important system information. This is
 configured to send the notification to the account owner. The Subject
 is "Boot Notification" referencing also the JNIOR's Hostname.

 The message indicates that the JNIOR has completed booting. The text
 includes the content of the jniorboot.log file. The current jniorsys.log
 file is also attached. All of this is very helpful should the reboot come
 as a surprise.

SEE ALSO
 HELP Topics: IpConfig/MailHost, IpConfig/EmailAddress, SENDMAIL, IPCONFIG, LOGS

 Page 136

Events/OnBoot/EmailBlock Registy Key

NAME
 Events/OnBoot/EmailBlock

DEFAULT
 None

DESCRIPTION
 This key specifies a node in the Registry Email/ section that defines a
 custom email message. When this key is undefined the Boot Notification email
 is sent using the default message definition. A custom or named message
 might optionally be defined using a named block.

 Various keys define the recipients, subject, message detail, and attachments.
 While when appearing in the Email section these define a default, each can
 be placed in a named block (node) creating a unique email designed for a
 specific use. The block name is arbitrary but logically should relate to the
 email's use. The details involved in designing an email are describe in a
 subsequent section.

SEE ALSO
 HELP Topics: EMAIL_BLOCK

Events/OnBoot/RunEnable Registry Key

NAME
 Events/OnBoot/RunEnable

DEFAULT
 enabled

DESCRIPTION
 During boot applications defined by Run keys are started. Janos is a multi-
 tasking system and multiple programs can be running simultaneously. This
 Registry key can be used to temporarily disable program startup on boot.

 Programs will also not be started if the JNIOR is in SAFE MODE. If an
 application is responsible for a reboot loop, SAFE MODE may be required to
 regain control of the unit.

 You may want to work with your JNIOR without the added complication of
 background programs. The PS command can be used to display running processes.
 The KILL command can be used to stop processes. This Registry key can be used
 to prevent programs from running in the first place without a need to remove
 the associated Run keys.

SEE ALSO
 HELP Topics: PS, KILL, SAFEMODE

 Page 137

Events/OnAlarm Registry Key

NAME
 Events/OnAlarm

DEFAULT
 enabled

DESCRIPTION
 This Registry key can be used to disable all alarm based events. By default
 the alarm based events must be enabled by their individual keys. This key
 provides a global means by which alarm events can be disabled.

SEE ALSO
 HELP Topics: Events/OnAlarm1, ALARMING

Events/OnAlarm1 Registry Key

NAME
 Events/OnAlarm1

DEFAULT
 enabled

DESCRIPTION
 This Registry key can be used to disable the Digital Input Counter alarm
 Type 1 services. This is an alarm that occurs when Limit 1 is reached. These
 alarms are individually enabled through the IO/Inputs/[DIN]/Alarm1 keys
 where [DIN] specifies the Digital Input (DIN1 thru DIN12).

SEE ALSO
 HELP Topics: Events/OnAlarm2, ALARMING

Events/OnAlarm2 Registry Key

NAME
 Events/OnAlarm2

DEFAULT
 enabled

DESCRIPTION
 This Registry key can be used to disable the Digital Input Counter alarm
 Type 2 services. This is an alarm that occurs when Limit 2 is reached. These
 alarms are individually enabled through the IO/Inputs/[DIN]/Alarm2 keys
 where [DIN] specifies the input.

SEE ALSO
 HELP Topics: Events/OnUsage, ALARMING

 Page 138

Events/OnUsage Registry Key

NAME
 Events/OnUsage

DEFAULT
 enabled

DESCRIPTION
 This Registry key can be used to disable Usage Alarm services. These alarms
 are individually enabled through the individual IO/Inputs/[DIN]/Usage/OnAlarm
 and IO/Outputs/[ROUT]/Usage/OnAlarm keys where [DIN] specifies the input or
 [ROUT] the output.

SEE ALSO
 HELP Topics: Events/OnAlarm, ALARMING

Events/OnConfig Registry Key

NAME
 Events/OnConfig

DEFAULT
 enabled

DESCRIPTION
 An event occurs when the JNIOR updates the /flash/jnior.ini file in response
 to changes in the Registry. By default this key enables configuration events.

Events/OnConfig/Email Registry Key

NAME
 Events/OnConfig/Email

DEFAULT
 disabled

DESCRIPTION
 When settings have been altered in the Registry the /flash/jnior.ini file
 will be updated. This Registry key can be used to configure the JNIOR to send
 a Configuration Change Notification email.

 Page 139

Events/OnConfig/EmailBlock Registry Key

NAME
 Events/OnConfig/EmailBlock

DEFAULT
 OnConfig

DESCRIPTION
 When the Configuration Change Notification is enabled the detailed email is
 described by the settings in the email block defined by this Registry key.
 By default the block is named "OnConfig" although any other block may be
 used. The details of email design are covered in another section.

SEE ALSO
 HELP Topics: EMAIL_BLOCK

Email Blocks Registry Key

EMAIL BLOCK
 JANOS can send email messages in response to certain events. Any number of
 unique Email messages can be defined for use as the situation requires. A
 generic (not situation specific) Email is defined by the following keys.
 A unique Email construct can be defined and assigned to unique Registry
 sections or email blocks . These may be separately referenced and used as
 needed. To create a situation specific email message using a unique message
 identifier [BLOCK] in those keys where it appears.

SEE ALSO
 HELP Topics: Email/ToAddress

Email/ToAddress Registry Key

NAME
 Email/ToAddress
 [BLOCK]/ToAddress

DEFAULT
 current IpConfig/EmailAddress setting

DESCRIPTION
 This defines one or more destination email addresses of the form
 user@domain.com. Multiple addresses are separated by commas. By default
 this would send the email to the email account owner.

SEE ALSO
 HELP Topics: Email/CcAddress, EMAIL_BLOCK, IpConfig/EmailAddress

 Page 140

Email/CcAddress Registry Key

NAME
 Email/CcAddress
 [BLOCK]/CcAddress

DEFAULT
 None

DESCRIPTION
 This defines one or more destination email addresses of the form
 user@domain.com. Multiple addresses are separated by commas. These
 addresses will receive the defined message as a CC recipient.

SEE ALSO
 HELP Topics: Email/BccAddress, EMAIL_BLOCK

Email/BccAddress Registry Key

NAME
 Email/BccAddress
 [BLOCK]/BccAddress

DEFALUT
 None

DESCRIPTION
 This defines one or more destination email addresses of the form
 user@domain.com. Multiple addresses are separated by commas. These
 addresses will receive the defined message as a BCC blind recipient.

SEE ALSO
 HELP Topics: Email/Subject, EMAIL_BLOCK

 Page 141

Email/Subject Registry Key

NAME
 Email/Subject
 [BLOCK]/Subject

DEFAULT
 Varies

DESCRIPTION
 This defines the Subject line to be used with the message. JNIOR requires
 that a Subject be defined for all messages although this is not strictly
 a requirement for email itself. If the Subject key is not given, JNIOR
 will utilize a default Subject as appropriate to the purpose of the email.

SEE ALSO
 HELP Topics: Email/Message, BLOCK_EMAIL

Email/Message Registry Key

NAME
 Email/Message
 [BLOCK]/Message

DEFAULT
 Varies

DESCRIPTION
 This defines message content to be sent in the email. JNIOR does not require
 that message content be supplied. This may be used in conjunction with a
 Message File and the text defined here will appear as a prefix to the
 content of the file. A default message is used with event notifications.

SEE ALSO
 HELP Topics: Email/MessageFile, EMAIL_BLOCK

 Page 142

Email/MessageFile Registry Key

NAME
 Email/MessageFile
 [BLOCK]/MessageFile

DEFAULT
 Varies

DESCRIPTION
 This defines the file that contains textual Message content to be included
 in the email. If separate Message text is supplied the content of this file
 will be appended to that text in the message.

 For example, the jniorboot.log text file is supplied in the text of the
 default Boot Notification email.

SEE ALSO
 HELP Topics: Email/Attachments, Email/Message, EMAIL_BLOCK, LOGS

Email/Attachments Registry Key

NAME
 Email/Attachments
 [BLOCK]/Attachments

DEFAULT
 Varies

DESCRIPTION
 This lists one or more files to be sent as attachments with the email message.
 Each file specification is to be separated by a ‘;’ semicolon. For example,
 the jniorsys.log file is attached to the default Boot Notification email.
 Attachments may be of any type although some email servers will not accept
 certain types of attachments.

SEE ALSO
 HELP Topics: Email/HTML, EMAIL_BLOCK, LOGS

 Page 143

Email/HTML Registry Key

NAME
 Email/HTML
 [BLOCK]/HTML

DEFAULT
 disabled

DESCRIPTION
 This key is to be enabled when an email is properly designed using HTML
 structure and content.

SEE ALSO
 HELP Topics: Email/ToAddress, EMAIL_BLOCK

 Page 144

Email/Port Registry Key

NAME
 Email/Port

DEFAULT
 25

DESCRIPTION
 The Simple Mail Transfer Protocol (SMTP) is used for email delivery. This
 key may be used to specify a port as may be required by your MailHost.
 Note that the MailHost and any associated SMTP Authentication settings
 (Username and Password) are set by the IPCONFIG command.

 By default JANOS will utilize the STARTTLS capability if offered. The
 Email/StartTLS Registry key must be enabled.

 Port 25 is the standard SMTP port for mail delivery. This port may or may
 not require authentication (SMTP_AUTH). It may or may not support STARTTLS
 allowing for the encrypted transfer of content. JANOS will use SMTP_AUTH by
 default and if STARTTLS is supported will make the secure connection.

 Port 587 is the Mail Submission Agent (MSA) port which requires authentication
 (SMTP_AUTH). This port may also support STARTTLS. If STARTTLS is supported
 (and generally it is) JANOS will establish an encrypted connection and
 transfer content securely.

 Port 465 is the SMTPS port. This is like the MSA port in that it requires
 authentication before mail can be submitted. It also requires that a SSL/TLS
 encrypted connection be established initially. The STARTTLS option is not
 used. For JANOS to properly transfer mail using this port the Email/SMTPS
 Registry key must be enabled.

 Note that JANOS can successfully post email using any of the above three
 ports. Generally the email content will be transferred securely using an
 encrypted connection. That assumes the availability of the STARTTLS option.
 But if you need to be absolutely certain of a secure transfer, use port 465
 and enable the Email/SMTPS key.

SEE ALSO
 HELP Topics: IPCONFIG, Email/SMTPS, Email/StartTLS, Email/SMTPS

 Page 145

Email/StartTLS Registry Key

NAME
 Email/StartTLS

DEFAULT
 enabled

DESCRIPTION
 Email deliveries that initially begin with a clear text non-encrypted
 connection are upgraded to secure using the STARTTLS option (when offered).
 This Registry key should remain enabled to insure proper security. This
 can be used to disable SSL/TLS use for email delivery. You should only do
 so if there are issues with secure connections.

SEE ALSO
 HELP Topics: CERTMGR, SSL/Enabled, Email/Port

Email/SMTPS Registry Key

NAME
 Email/SMTPS

DEFAULT
 disabled

DESCRIPTION
 Port 465 can be used for email submission. This uses SMTPS which is
 essentially SMTP with authentication using SMTP_AUTH. The port also requires
 an initial SSL/TLS connection. In order for JANOS to know to make that
 initial secure connection you must set this key to enabled. This should be
 disabled for email delivery over ports 25 and 587. For either of these ports
 the Email/StartTLS key should be enabled.

SEE ALSO
 HELP Topics: Email/Port, Email/StartTLS

 Page 146

Email/RetryCount Registry Key

NAME
 Email/RetryCount

DEFAULT
 6 (retries)

DESCRIPTION
 There may be difficulties in delivering an email. By default after an attempt
 has failed JNIOR will reschedule the delivery of the message. Failures on an
 initial attempt are typical these days as servers are implementing
 grey-listing techniques to reduce the amount of unsolicited spam email.
 In general the Internet is a lossy network and retries are not unusual. Set
 RetryCount to 0 or 1 to disable retrying.

SEE ALSO
 HELP Topics: Email/RetryDelay, EMAIL_BLOCK

Email/RetryDelay Registry Key

NAME
 Email/RetryDelay

DEFAULT
 10 (minutes)

DESCRIPTION
 After a failed email delivery attempt JNIOR will reschedule another delivery
 at a later time. This key defines the delay period in minutes. Email servers
 implementing grey-listing my routinely reject initial deliveries. These
 techniques are designed to cause spammers some difficulty and help to cut
 down the amount of unsolicited email. The JNIOR should be set to attempt
 repeated deliveries for at least a couple of hours to increase chances of
 success.

SEE ALSO
 HELP Topics: EMAIL_BLOCK

 Page 147

Email/Signature Registry Key

NAME
 Email/Signature

DEFAULT
 By default the JNIOR includes a signature line in all emails indicating the
 model and serial number of the sending unit. The version of JANOS is also
 included.

DESCRIPTION
 You may provide a custom signature line overriding the default using this
 Registry entry.

SEE ALSO
 HELP Topics: Email/RetryCount, EMAIL_BLOCK

 Page 148

WebServer/Server Registry Key

NAME
 WebServer/Server

DEFAULT
 enabled

DESCRIPTION
 This Registry key can be used to disable the HTTP Server. This may be
 desirable if communications with JNIOR will be through some other means and
 connections to the JNIOR HTTP Port are to be ignored. Note that the WebUI
 is accessed using the WebServer and your browser. A reboot is required when
 enabling or disabling the WebServer.

SEE ALSO
 HELP Topics: WebServer/Port, WebServer/SSLPort

WebServer/SSLPort Registry Key

NAME
 WebServer/SSLPort

DEFAULT
 80

DESCRIPTION
 This specifies the TCP/IP port to use for unsecure Hypertext Transfer
 Protocol (HTTP) services. The default is the standard Port 80.

SEE ALSO
 HELP Topics: WebServer/SSLPort

WebServer/SSLPort Registry Key

NAME
 WebServer/SSLPort

DEFAULT
 443

DESCRIPTION
 This specifies the TCP/IP port to use for Secure Hypertext Transfer
 Protocol (HTTPS) connections using TLS/SSL. The default is the standard
 Port 443.

SEE ALSO
 HELP Topics: WebServer/Root, WebServer/SSLPort

 Page 149

WebServer/Login Registry Key

NAME
 WebServer/Login

DEFAULT
 enabled

DESCRIPTION
 By default the Web Server requires a successful login. This is highly
 recommended. If the JNIOR is connected to a private secure network this login
 requirement can be removed by setting this Registry key to disabled. When
 Login is disabled you must also define a user account for anonymous login
 using the WebServer/Anonymous Registry key. These changes take effect
 immediately. You will not be logged out of your current session. Note that
 login may still be required if folder or file permissions are restricted
 (See CHMOD console command). By default initially all users have access
 to all folders and files.

PUBLIC WEBSITE DATA
 It is possible to require a login for some webpages and serve others
 openly to the public. Any file located within the /flash/public folder
 will be served without requiring authentication. This assumes that access
 to the file has not otherwise been restricted by the setting of file
 permissions.

SEE ALSO
 HELP Topics: WebServer/Anonymous, CHMOD

WebServer/Anonymous Registry Key

NAME
 WebServer/Anonymous

DEFAULT
 None

DESCRIPTION
 If the Login requirement is removed using the WebServer/Login key a user
 account must be defined for the JNIOR to use. This Registry key must be set
 to a valid active user account with the entry of either a UserID or Username.
 With the default set of user accounts, you would set this key to 'jnior'
 for example. Note that if the anonymous account is invalid or disabled the
 JNIOR will continue to request login credentials.

SEE ALSO
 HELP Topics: WebServer/Login, USERS

 Page 150

/WebServer/Index Registry Key

NAME
 /WebServer/Index

DEFAULT
 index.php;index.html

DESCRIPTION
 This specifies the name of the website’s home page. This is the document that
 would be served if a file is not specified in the URL. Multiple files may be
 specified separated by a semicolon ';'. The search is from left to right so
 the files are in priority order. The defaults of index.php and index.html
 are always included in the search as they are automatically appended to the
 content of this key.

SEE ALSO
 HELP Topics: WebServer/Path

WebServer/Root Registry Key

NAME
 /WebServer/Root

DEFAULT
 /flash/www

DESCRIPTION
 This specifies the folder within the JNIOR file system that represents the
 root of the website. This is the folder that would contain the default
 website home page and the related pages would be located in this folder or
 in subfolders. The default is /flash/www . This folder must be specified
 as absolute from the root of the file system (starting with a '/'). The
 trailing '/' is optional.

 Files required for a website may be located in folders under the root or
 may be completely contained within a ZIP library creating a virtual folder.

 A website located in this default root will require a login if WebServer/Login
 is enabled (default). If the JNIOR is to serve a public site then the home page
 can be located in the /flash/public folder which is not subject to the
 authentication requirement. The /flash/public location is always checked
 the /WebServer/Root location.

 This provides the ability to have a public site while still requiring login
 for the WebUI. The WebUI is typically located in /flash/www/config.zip .

SEE ALSO
 HELP Topics: WebServer/Index, ZIP, WebServer/Login

 Page 151

/WebServer/Path Registry Key

NAME
 /WebServer/Path

DEFAULT
 /flash/www/config

DESCRIPTION
 This is used to specify alternate search paths for web content. The JNIOR
 first searches the /flash/public folder and then the /WebServer/Root
 folder. The default for that is /flash/www . If the requested page is not
 located then each path defined in the /WebServer/Path key will be searched
 in sequence. Paths must be specified from the root of the file system
 starting with a '/' and a trailing '/' is optional. Multiple paths must be
 separated by a semicolon ';'.

NOTES
 The default WebUI is supplied completely enclosed in a single library file
 named /flash/www/config.zip . A ZIP file creates a virtual folder from
 which pages may be served. The default for this Registry key is
 /flash/www/config creating a path to the WebUI. In the absence of a custom
 website the WebServer looks next to the path specified by this key. With the
 default it looks for the home page in the folder /flash/www/config and that
 folder does not exist. Instead it finds the virtual folder created by the ZIP
 file and in that library it locates a suitable home page. That home page
 serves the JANOS WebUI.

SEE ALSO
 HELP Topics: ZIP

 Page 152

Locators Registry Key

NAME
 /WebServer/Locator/[FOLDER]
 /WebServer/Public/[FOLDER]

DEFAULT
 None

DESCRIPTION
 A Locator allows you to redirect a folder specified in the URL to another.
 The target folder may exist or be created as a virtual folder by a ZIP (or
 JAR) file named and positioned as would the folder. For example, an
 application may include configuration web pages along with executable program
 code. A Locator can be registered to redirect an appropriately named folder
 to the program JAR file. The target folder may exist anywhere in the JNIOR
 file system.

 The /WebServer/Locator redirects web page access to locations that are
 subject to authentication (login) as might be required by the setting of
 the /WebServer/Login key. The folder to be referenced in the URL is defined
 in the key name replacing [FOLDER] and the key value defines the target folder
 location.

 The /WebServer/Public redirects web page access to locations that are NOT
 subject to authentication (login) regardless of the /WebServer/Login key.
 The folder to be referenced in the URL is defined in the key name replacing
 [FOLDER] and the key value defines the target folder location.

NOTES
 The JANOS Help System creates a /WebServer/Public/manpages entry in the
 Registry which allows web access to images included in Help entries. Although
 otherwise located those image files then appear to the external browser as
 being in a manpages folder.

SEE ALSO
 HELP Topics: /WebServer/Path, /WebServer/Root

 Page 153

Websocket Registry Key

WEBSOCKET INTERFACE
 The WebServer provides the ability to upgrade a connection to support the
 Websockets Protocol. JANOS supplies a built-in Websocket interface that
 supports the JANOS Management Protocol (JMP). This can replace all of the
 functionality of the legacy JNIOR Protocol while providing much more
 capability. In addition, application programs can be created as custom
 Websocket servers.

SEE ALSO
 HELP Topics: Websocket/Login, JMP

Websocket/Login Registry Key

NAME
 Websocket/Login

DEFAULT
 enabled

DESCRIPTION
 The Websocket interface fully supports administrative management and data
 monitoring functions. It requires a successful login. When this service is
 accessed through a local website served by the WebServer the login
 credentials used to access the web pages are applied automatically to the
 Websocket interface. If you have disabled the WebServer login you will need
 to support the Websockets login or otherwise set this key to disabled. This
 is not recommended as anyone can then do anything with the JNIOR.

SEE ALSO
 HELP Topics: Websocket/Anonymous, WEBSOCKET

Websocket/Anonymous Registry Key

NAME
 Websocket/Anonymous

DEFAULT
 None

DESCRIPTION
 Defines the user name or ID for anonymous logins. When a Websocket connection
 requires a login (default) the login must reference a defined username using
 the correct password for that account. In order to accommodate a scheme
 whereby data monitoring would not require login but control or configuration
 would, JANOS allows for anonymous login. When the Websocket/Anonymous key is

 Page 154

 defined (exists) and the Websocket/Login key is set to disabled, anonymous
 login is allowed. The key must contain a valid user name or ID for a user
 account with the permissions appropriate for anonymous use. To prevent
 anonymous login this key should be removed from the Registry.

SEE ALSO
 HELP Topics: Websocket/Files, Websocket/Login, USERS

Websocket/Files Registry Key

NAME
 Websocket/Files

DEFAULT
 enabled

DESCRIPTION
 The built-in Websocket interface supports file management. Files may be
 listed, read, written, renamed and deleted. Similarly folders can be created,
 renamed and removed. For additional security this feature can be disabled
 with this key. This removes the file management function from the interface
 (after a reboot). This key also signals the WebUI to remove the File Folders
 tab.

SEE ALSO
 HELP Topics: Websocket/Console, FILES

Websocket/Console Registry Key

NAME
 Websocket/Console

DEFAULT
 enabled

DESCRIPTION
 Each connection to the built-in Websocket interface can support a single
 command line (console) session. For additional security this feature can be
 disabled by this key. This removes the console functionality from the
 Websocket interface (after reboot). The key also signals the WebUI to remove
 the Console tab.

SEE ALSO
 HELP Topics: WEBSOCKET

 Page 155

JMPServer/Server Registry Key

NAME
 JMPServer/Server

DEFAULT
 enabled

DESCRIPTION
 This can be used to disable the JMP Server. This may be desirable if
 communications with JNIOR will be through some other means and connections
 to the JMP Port are to be ignored. Changes take effect on reboot.

SEE ALSO
 HELP Topics: JMPServer/Port, JMP

JMPServer/Port Registry Key

NAME
 JMPServer/Port

DEFAULT
 9220

DESCRIPTION
 This defines the TCP/IP port on which JNIOR will listen for JMP connections.
 The default port is 9220. Changes take effect on reboot.

SEE ALSO
 HELP Topics: JMP

JMPServer/Login Registry Key

NAME
 JMPServer/Login

DEFAULT
 enabled

DESCRIPTION
 By default the JMP server requires a successful login. This is achieved as
 part of the protocol. Login is highly recommended. If the JNIOR is connected
 to a private secure network this login requirement can be removed by setting
 this Registry key to disabled. The change takes effect immediately. Note
 that this requires that JMPServer/Anonymous be set.

SEE ALSO
 HELP Topics: JMPServer/Anonymous, JMP

 Page 156

JMPServer/Anonymous Registry Key

NAME
 JMPServer/Anonymous

DEFAULT
 None

DESCRIPTION
 Defines the user name or ID applied to anonymous logins. When the JMP server
 requires a login (default) the login must reference a defined username using
 the correct password for that account. In order to accommodate a scheme
 whereby data monitoring would not require login but control or configuration
 would, JANOS allows for anonymous login. When the JMPServer/Anonymous key
 is defined anonymous login is allowed. The key must contain a valid Username
 or ID defining a user account with the permissions appropriate for anonymous
 use. To prevent anonymous login this key should be removed from the Registry.

NOTES
 The User name or ID for any user account can be found using the USERS command
 at the command line prompt.

SEE ALSO
 HELP Topics: JMPServer/Login, JMP, USERS

 Page 157

JniorServer/Server Registry Key

NAME
 JniorServer/Server

DEFAULT
 enabled

DESCRIPTION
 This entry can be used to disable the JNIOR Server. This protocol should be
 disabled if the JANOS Management Protocol (JMP) is used routinely. Changes
 take effect on reboot.

SEE ALSO
 HELP Topics: JniorServer/Port, JPROTOCOL, JMP

JniorServer/Port Registry Key

NAME
 JniorServer/Port

DEFAULT
 9200

DESCRIPTION
 This defines the TCP/IP port on which JNIOR will listen for protocol
 connections. The default port is 9200. Changes take effect on reboot.

SEE ALSO
 HELP Topics: JniorServer/Login, JPROTOCOL

JniorServer/Login Registry Key

NAME
 JniorServer/Login

DEFAULT
 enabled

DESCRIPTION
 By default the JNIOR protocol requires a successful login. This is achieved
 through a function as part of the protocol. It is highly recommended that
 Login be accommodated. If the JNIOR is connected to a private secure network
 this login requirement may be removed. Set this Registry key to disabled.
 The change takes effect immediately. Note that this requires that
 JniorServer/Anonymous be set.

SEE ALSO
 HELP Topics: JniorServer/Anonymous, JPROTOCOL

 Page 158

JniorServer/Anonymous Registry Key

NAME
 JniorServer/Anonymous

DEFAULT
 Defines the user name or ID applied to anonymous logins. When the JNIOR
 protocol requires a login (default) the login must reference a defined
 username using the correct password for that account. In order to
 accommodate a scheme whereby data monitoring would not require login but
 control or configuration would, JANOS allows for an anonymous login. When
 this Registry key is defined anonymous login is allowed. The key must
 contain a valid user name or ID for a user account with the permissions
 appropriate for anonymous use. To prevent anonymous login this key should
 be removed from the Registry.

 The user name or ID for accounts can be found using the USERS command at
 the command line prompt.

SEE ALSO
 HELP Topics: JniorServer/RemoteIP, JniorServer/Login, JPROTOCOL, USERS

 Page 159

JniorServer/RemoteIP Registry Key

NAME
 JniorServer/RemoteIP

DEFAULT
 None

DESCRIPTION
 The JNIOR protocol server can be configured to maintain a outbound connection
 to an external JNIOR protocol server. This Registry key defines the IP
 address of the remote connection point. Once defined the connection will be
 established.

 Outbound connections allow JNIOR communications between an Internet server
 and individual devices behind a firewall or NAT router. This is best
 accomplished with an application program which can be written to handle
 custom protocols as may be required for such a system. The JNIOR Protocol
 is a binary master-slave interface that takes some care in implementation.
 The protocol includes unsolicited messages as well which are often overlooked.

SEE ALSO
 HELP Topics: JniorServer/RemotePort, JPROTOCOL

JniorServer/RemotePort Registry Key

NAME
 JniorServer/RemotePort

DEFAULT
 9200

DESCRIPTION
 The JNIOR protocol server can be configured to make an outbound connection
 to one remote host. This is enabled using the JniorServer/RemoteIP
 Registry key and the Port number may be specified by this key.

SEE ALSO
 HELP Topics: JniorServer/RemoteIP, JPROTOCOL

 Page 160

FTP/Server Registry Key

NAME
 FTP/Server

DEFAULT
 enabled

DESCRIPTION
 JANOS supports a fully functional File Transfer Protocol (FTP) server. This
 FTP Server provides one of the methods available for moving files on and off
 of the JNIOR.

 This Registry key can be used to disable the FTP Server for added security.
 Changes take effect on reboot.

SEE ALSO
 HELP Topics: FTP/Port, FTPCLIENT

FTP/Port Registry Key

NAME
 FTP/Port

DEFAULT
 21

DESCRIPTION
 This defines the TCP/IP port on which JNIOR will listen for FTP command
 connections. The standard port is 21.

SEE ALSO
 HELP Topics: FTP/UnixStyle, FTPCLIENT

 Page 161

FTP/UnixStyle Registry Key

NAME
 FTP/UnixStyle

DEFAULT
 disabled

DESCRIPTION
 The specification for the File Transfer Protocol (FTP) does not specify the
 format for directory listings. Originally the detail was only for display
 and could be in the system’s native format. There are two generally used
 layouts. Systems based on the Windows operating system provide an MS-DOS
 style listing while most others provide a Unix format. JANOS provides the
 MS-DOS style by default.

 FTP clients typically now need to interpret the listing for graphical display
 and tracking of directory/folder content. Most client programs will detect
 the formatting and process the content as needed. Other clients might expect
 one style or the other.

 If an FTP client has difficulty retrieving the directory listing from the
 FTP Server you may set this Registry Key to enabled. The FTP Server will
 then supply the Unix formatted directory listing when requested.

SEE ALSO
 HELP Topics: FTP/Server, FTPCLIENT

 Page 162

Telnet/Server Registry Key

NAME
 Telnet/Server

DEFAULT
 enabled

DESCRIPTION
 JANOS supports a Telnet server providing access to the Console or Command
 Line Interface (CLI). Telent simulates serial communications in this case
 similar to a connection to the RS-232 COM port. Both are a means of working
 with the command line interface. This is typically used for product
 configuration, maintenance and diagnostics.

 This Registry entry can be used to disable the Telnet Server for increased
 security. Changes take effect on reboot. The Console is also available through
 the WebUI.

SEE ALSO
 HELP Topics: Telnet/Port, COM

Telnet/Port Registry Key

NAME
 Telnet/Port

DEFAULT
 23

DESCRIPTION
 This defines the Telnet port. The standard TCP/IP port is 23. A unique port
 may be used for increased security.

SEE ALSO
 HELP Topics: Telnet/Server, COM

 Page 163

Beacon/Enabled Registry Key

NAME
 Beacon/Enabled

DEFAULT
 enabled

DESCRIPTION
 The BEACON protocol service is used to identify JNIORs on the network,
 configure IP addressing, and provide management functions. The protocol
 allows us to communicate with a JNIOR on the local network segment even
 when its IP configuration is faulty or set for a foreign network. Changes
 to Registry settings in this section require a reboot in order to become
 effective.

 For added security this protocol may be disabled using this Registry key.
 The BEACON protocol is required for proper operation of the Support Tool.
 JANOS also uses this protocol to identify peers on its local network.

SEE ALSO
 HELP Topics: Beacon/Announce

Beacon/Announce Registry Key

NAME
 Beacon/Announce

DEFAULT
 enabled

DESCRIPTION
 The BEACON protocol service by default announces the presence of the JNIOR
 on the network using a broadcast UDP communication. The Support Tool uses
 this to list local JNIORs on the Beacon tab. This feature may be disabled
 for added security by setting this key to disabled.

NOTES
 On boot JANOS issues a QUERY_ALL BEACON request requesting announcements
 from its peers on the local network segment.

SEE ALSO
 HELP Topics: Beacon/AutoAnnounce

 Page 164

Beacon/AutoAnnounce Registry Key

NAME
 Beacon/AutoAnnounce

DEFAULT
 disabled

DESCRIPTION
 The BEACON protocol service announces the JNIOR on boot by default using a
 UDP broadcast. This also occurs whenever key configuration settings are
 changed. There will be otherwise extended periods without any announcement.
 This Registry Key may be used to actively monitor the health of the JNIOR.
 The JNIOR will emit a periodic announcement every 30 seconds when this key
 is set to enabled.

NOTES
 The BEACON broadcasts on UDP Port 4444. Each pack is minimal and while such
 broadcasts are persistent they do not significantly impact overall network
 bandwidth.

SEE ALSO
 HELP Topics: Beacon/Enabled

 Page 165

Digital Inputs Inputs

OVERVIEW
 Each digital input may be configured in a number of ways to achieve the
 desired function. Each Digital Input is processed as follows:

 1. Sampled (Hardware)
 2. Inversion
 3. Debounce
 4. Latching
 5. Counting
 6. Metering
 7. Logging
 8. Conditioning
 9. Alarming
 10. State Reported

 All of the above steps are configurable through the WebUI and follow the
 resulting Registry key settings.

 Page 166

REGISTRY NAMING
 Each Digital Input has its own Registry section (node) which is numerically
 defined. Presently there can be 4, 8 or 12 inputs depending on the JNIOR
 model. Here we use [DIN] as a placeholder for the appropriate section name.
 For example using 'din3' for Digital Input 3 we can set a text description
 as follows:

 reg IO/Inputs/din3/Desc = "Power Enabled"

NOTES
 Registry keys are not case-sensitive however case is preserved when a key
 is first defined. This improves readability without causing difficulty
 in referencing keys.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Desc, REG, MODELS, INPUTS

 Page 167

Inversion Inputs

DESCRIPTION
 A Digital Input may be configured to be read as ON when no voltage is
 applied to the input and be considered OFF when the LED associated with the
 input is actually illuminated. This is the case when the input is 'Inverted'.

 The inversion can be accomplished in two different ways. The input signal
 may be inverted as it is sampled by the system. It can also be inverted as
 it is reported by the system. The difference is in how other input features
 perceive the input state.

 Sampled Inversion

 The input Debounce, Latching, Counting, Metering, and Logging features
 operate on the input state as it is sampled. When Inversion is applied
 to the sampled input all of these features see and respond to the inverted
 input state. This is useful in accommodating an input signal whose voltage
 works with opposite meaning (5VDC means not active for instance).

 Conditioned Inversion

 When an application uses an input state in a sense opposite in meaning to
 the signal itself, it may be appropriate to invert the reported state. In
 this case input features work logically and the application is still
 satisfied. In this case the Inversion is applied as a form of state
 Conditioning prior to reporting.

NOTES
 State Alarming reflects the reported state. Counting and Metering (Usage)
 alarms result from the sampled state.

 Both Counting and Metering can be configured to respond to either a '0'
 or '1' state. In effect these each have their own type of inversion. There
 is sufficient flexibility to accommodate whatever is needed.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Inversion, IO/Inputs/[DIN]/Conditioning

 Page 168

Debouncing Inputs

DESCRIPTION
 Relays and switches have mechanical contacts which physically make or break
 a circuit. Rarely will the contacts come together solidly or separate
 decisively without bouncing (briefly making and breaking the circuit). This
 can raise havoc with digital latching and counting circuits that might be
 monitoring through the relay/switch contact. It can result in latching at the
 wrong time (when the relay opens for instance) or in extra counts. Both are
 undesirable.

 An input transition is sampled on either the input turning ON or turning OFF.

 When an input changes after being stable longer than the defined Debounce
 delay the input transition is immediately reported and processed. This
 eliminates filtering delay.

 The Debounce delay timer is restarted with each input transition. When the
 timer is active additional transitions are not processed. This ignores
 noise from switch and relay contact bounce.

 When the Debounce timer expires the state of the input is updated to reflect
 its current status. In effect this accomplishes pulse stretching. A short
 input pulse shorter than the defined delay will activate the input which
 will remain active until the delay expires. This can be long after the pulse
 completed.

NOTES
 Another way to capture short input pulses is Latching. This can be
 configured to accomplish pulse stretching as well. Additionally a pulse
 may be captured and require a manual reset through Latching.

 Debounce can also be used to achieve a stable state detecting the presence
 of an AC voltage. In order to avoid counting each period of a 60Hz AC voltage
 the Debounce setting needs to be at least 167 milliseconds. The default
 setting of 200 milliseconds is perfect for that. The input detects the
 presence of the voltage and gives a steady ON result. Note though that an
 input is rated only to 30V.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Debounce, INPUTS, LATCHING

 Page 169

Latching Inputs

DESCRIPTION
 When pulsed signals are applied to a Digital Input the input state may
 change so fast that it cannot be seen or detected by an application. The
 solution is to capture the pulse and hold the signal state long enough
 to be detected and then processed. An input can be configured to latch on
 either the 1 (ON) state or the 0 (OFF) state. A pulse as short a 1 milli-
 second can be detected.

 Once latched a timer can be configured to reset the latch after a period
 suitable for the application. Alternatively the latch might hold the
 condition indefinitely until it is manually reset or acknowledged by the
 application programming. This may be appropriate in a fire alarm situation.

NOTES
 Pulses may also be stretched using Debounce.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Latching, DEBOUNCE

 Page 170

Logging Inputs

DESCRIPTION
 Individual changes in I/O state are accurately logged. The IOLOG command
 can be used to display and save I/O logs. Applications have the ability to
 query I/O log detail with sufficient accuracy to calculate information such
 as the RPM (Revolutions Per Minute) of a wind turbine both at high speeds
 and very low speeds (fractions of RPM). The I/O logs can be used in
 preference to monitoring the input state itself.

EXAMPLE
 I/O Log content:
 06/10/21 13:00:45.487, DIN ---- 0000 0000, RLY ---- ---- 0000 0000
 06/11/21 11:10:41.197, DIN ---- 0000 0000, RLY ---- ---- 0000 0001
 06/11/21 11:10:41.297, DIN ---- 0000 0000, RLY ---- ---- 0000 0000
 06/11/21 13:23:29.008, DIN ---- 0000 0000, RLY ---- ---- 0000 0001
 06/11/21 13:23:31.008, DIN ---- 0000 0000, RLY ---- ---- 0000 0000
 06/11/21 13:23:34.813, DIN ---- 0000 0000, RLY ---- ---- 0000 0001
 06/11/21 13:23:34.913, DIN ---- 0000 0000, RLY ---- ---- 0000 0000
 06/11/21 13:28:30.665, DIN ---- 0000 0000, RLY ---- 0001 0000 0000
 06/11/21 13:28:39.023, DIN ---- 0000 0000, RLY ---- 0001 0000 0010
 06/11/21 13:30:24.665, DIN ---- 0000 0000, RLY ---- 0000 0000 0000

 Note that in this example an external Power 4ROUT was added a one point
 and one of its relays closed and later opened.

NOTES
 High frequency input signals can impact product performance and logging for
 individual inputs may be disabled if that is of concern. It may be more that
 a frequently changing signal may mask the activity of other inputs given
 that the I/O log queue itself is of a fixed size.

SEE ALSO
 HELP Topics: IO/Inputs/Log, IOLOG, JRMON

 Page 171

IO/Inputs/Log Registry Key

NAME
 IO/Inputs/Log

DEFAULT
 enabled

DESCRIPTION
 This key can be used to disable logging of all of the Digital Inputs
 regardless of the logging settings for individual inputs. This setting
 does require a reboot to take effect.

NOTES
 You might consider disabling input logging if input signals change more than
 a few times per second. Applications however can refer to the I/O log to
 perform calculations such as averaging for reporting information such as
 Revolutions per Minute (RPMs).

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Log, LOGGING, IOLOG

Metering Inputs

DESCRIPTION
 JANOS performs Usage Metering for both Ditigal Inputs and Relay Outputs.
 This tallies the amount of time that either input or output remains in a
 defined state. By default this is the ON or 1 state for inputs and the CLOSED
 or 1 state for relays. The accumulated time is maintained to the millisecond
 and can be viewed through the Registry to the tenth of an hour. The JRMON
 command can also display usage meters. These are also displayed by the
 WebUI.

 These meters may be used for preventative maintenance. A Usage Alarm can be
 enabled to transmit an email notification when a service interval may be
 approaching.

SEE ALSO
 HELP Topics: $HOURMETER, JRMON, DIN

 Page 172

Counting Inputs

DESCRIPTION
 JANOS tallies the number of times a Digital Input enters a predefined state.
 By default the count reflects the ON or 1 input state. A counter is advanced
 each time the input transitions from the OFF 0 state to the ON 1 state.

 The counters may be viewed, set and reset using the JRMON command. They are
 also displayed by the WebUI. Applications may also utilize and manage counts.

 Alarms may be set and configured to send an email when counts reach either
 of two separate trigger points (Alarm1 and Alarm2).

SEE ALSO
 HELP Topics: ALARMING, DIN, JRMON

Alarming Inputs

DESCRIPTION
 JANOS is capable of handling a number of Alarm situations. These are events
 that can be enabled to preform an action or issue a notification. By default
 a notification can be configured. Applications can be written to respond to
 alarms and take other actions. Alarms are reported externally through the
 JMP and JNIOR protocols.

 Input Alarms may be defined to react to a specific input state. For example
 an input wired to a door sensor may be configured to send an email when
 going to the ON state.

 Alarms may be generated when an Input Counter reaches predefined values.
 Two separate input counter alarm trigger points may be defined: Alarm1 and
 Alarm2.

 And finally, an alarm may be triggered with an Digital Input or a Relay
 Output reaches a predefined Usage Metering hour total.

SEE ALSO
 HELP Topics: JMP, JPROTOCOL, Events/OnAlarm, EventsOnAlarm1, Events/OnAlarm2

Events/OnUsage

 Page 173

Text Descriptions Registry Key

NAME
 IO/Inputs/[DIN]/Desc

DEFAULT
 "Digital Input ##"

DESCRIPTION
 This defines a textual description for the associated Digital Input. This
 Registry key is not specifically used by the operating system. It is used
 by the WebUI and can be referenced by any other application desiring a
 description for the input.

ON STATE
 IO/Inputs/[DIN]/OnDesc

DEFAULT
 "On"

DESCRIPTION
 This defines the text used to describe the state when the associated input
 is ON. By default an input is considered to be ON when sufficient voltage
 is applied illuminating the associated LED.

 This Registry key is not specifically used by the operating system. It is
 used by the WebUI and can be referenced by any other application desiring
 a description for the input state.

NOTES
 An input may be configured to be Inverted either as JANOS perceives the
 input state or as it is reported. The associated LED follows the voltage
 state of the input. Depending on configuration the system may report a
 different condition.

OFF STATE
 IO/Inputs/[DIN]/OffDesc

DEFAULT
 "Off"

DESCRIPTION
 This defines the text used to describe the state when the associated input
 is OFF. By default an input is considered to be OFF when the associated
 LED is not illuminated.

 This Registry key is not specifically used by the operating system. It is
 used by the WebUI and can be referenced by any other application desiring
 a description for the input state.

NOTES
 An input may be configured to be Inverted either as JANOS perceives the

 Page 174

 input state or as it is reported. The associated LED follows the voltage
 state of the input. Depending on configuration the system may report a
 different condition.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Inversion, DIN, INPUTS

IO/Inputs/[DIN]/Inversion Registry Key

NAME
 IO/Inputs/[DIN]/Inversion

DEFAULT
 disabled

DESCRIPTION
 When this Registry key is enabled the JNIOR will invert the sense of the
 Digital Input as it is sampled. When enabled the input will be considered
 OFF when sufficient voltage is applied to the external circuit causing the
 associated LED to be illuminated.

 This inversion is applied immediately to the input and affects all other
 subsequent functions (Debounce, Latching, Alarming, Counting, etc.).

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Conditioning, DIN

IO/Inputs/[DIN]/Conditioning Registry Key

NAME
 IO/Inputs/[DIN]/Conditioning

DEFAULT
 0 (Normal)

DESCRIPTION
 The input state may be Cconditioned prior to being reported and after all
 other operations. By default the input state is as reported by the latching
 or debounce stages (Mode 0). You may configure inversion here or force the
 input to be always read as 0 (OFF) or 1 (ON). Note that counting and usage
 metering remain operational even when inputs are forced to a fixed state.
 The following settings are valid:

 0 Normal (no change)
 1 Inverted
 2 Forced to 0 (OFF) state
 3 Forced to 1 (ON) state

 A value other than those above will be handled as if set to the default.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Debounce, DIN, INVERSION

 Page 175

IO/Inputs/[DIN]/Debounce Registry Key

NAME
 IO/Inputs/[DIN]/Debounce

DEFAULT
 200 (milliseconds)

DESCRIPTION
 This defines the Debounce Delay in milliseconds.

 Relays and switches have mechanical contacts which physically make or break
 a circuit. Rarely will the contacts come together solidly or separate
 decisively without bouncing (briefly making and breaking the circuit). This
 can raise havoc with digital latching and counting circuits that might be
 monitoring through the relay/switch contact. It can result in latching at the
 wrong time (when the relay opens for instance) or in extra counts. Both are
 undesirable.

 By default the JNIOR digital inputs are debounced . An input must remain
 quiet (not change) for the specified delay before any transition on that
 input will be processed (latched, counted or logged).

 This is sufficient to eliminate most all of the issues arising from contact
 bounce.

 A setting of 0 disables the debounce. In this case the JNIOR is capable of
 counting transitions occurring at rates up to roughly 1,800 per second.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Latching, DEBOUNCE, DIN

IO/Inputs/[DIN]/Latching Registry Key

NAME
 IO/Inputs/[DIN]/Latching

DEFAULT
 disabled

DESCRIPTION
 Enable this Registry key when the associated input is to be latched. When
 enabled, the input will be considered to remain in the state defined by the
 LatchState setting after the voltage applied to the external input is
 changed. If the LatchTime is set to 0 seconds the User must manually reset
 the input. This can be done through the WebUI or other application.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/LatchTime, IO/Inputs/[DIN]/LatchState, DIN

 Page 176

IO/Inputs/[DIN]/LatchTime Registry Key

NAME
 IO/Inputs/[DIN]/LatchTime

DEFAULT
 0.0 (seconds)

DESCRIPTION
 This defines the time in seconds (0.1 equals 100 milliseconds) that an input
 remains latched before being automatically reset. A value of 0.0 will require
 the user to separately reset the latched input through an application or
 the JRMON command.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/LatchState, DIN, JRMON

IO/Inputs/[DIN]/LatchState Registry Key

NAME
 IO/Inputs/[DIN]/LatchState

DEFAULT
 1 (ON)

DESCRIPTION
 When Latching is enabled this specifies whether the input is latched in the
 ON state (1) or in the OFF state. The key is set to 1 or 0 respectively.

SEE ALSO
 HELP Topics: LATCHING, DIN

IO/Inputs/[DIN]/Log Registry Key

NAME
 IO/Inputs/[DIN]/Log

DEFAULT
 enabled

DESCRIPTION
 This key can be optionally used to disable logging on an input by input
 basis. If an input is going to be rapidly changing the time spent in the
 logging process can degrade system performance. In such circumstances it
 is suggested that logging can be disabled for the input.

SEE ALSO
 HELP Topics: IO/Inputs/Log, LOGGING, IOLOG

 Page 177

IO/Inputs/[DIN]/$HourMeter Registry Key

NAME
 IO/Inputs/[DIN]/$HourMeter

DESCRIPTION
 This dynamic key reports the total number of hours that a digital input has
 physically been in the state specified by UsageState . This value is
 nonvolatile and maintains its content through power removal and until it
 is specifically reset. It is reported here in hours to the one-hundredth.
 The Hour Meter is accurate to the millisecond and this high resolution value
 may be read through the JMP Protocol, the JNIOR Protocol or using the JRMON
 command.

SEE ALSO
 HELP Topics: METERING, JMP, JPROTOCOL, JRMON, DIN

 Page 178

IO/Inputs/[DIN]/Alarming Registry Key

NAME
 IO/Inputs/[DIN]/Alarming

DEFAULT
 disabled

DESCRIPTION
 When enabled an alarm is generated when then associated input enters the
 specified state. By default the alarm is issued when the conditioned
 state for the input indicates that the input has turned ON.

NOTES
 Inputs may be inverted when sampled, latched and/or conditioned prior to
 being monitored for alarming.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Alarm/Inversion, DIN, INVERSION, LATCHING

CONDITIONING, ALARMING

IO/Inputs/[DIN]/Alarm/Inversion Registry Key

NAME
 IO/Inputs/[DIN]/Alarm/Inversion

DEFAULT
 disabled

DESCRIPTION
 This setting defines the state triggering the alarm. Enable this key when
 the associated input is to alarm upon entering the OFF state. This inverts
 the input state prior to alarm monitoring and essentially changes the
 triggering state. By default an alarm normally is generated when the input
 turns ON.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Alarm/Email, ALARMING, DIN

 Page 179

IO/Inputs/[DIN]/Alarm/Email Registry Key

NAME
 IO/Inputs/[DIN]/Alarm/Email

DEFAULT
 disabled

DESCRIPTION
 This key enables Email Notifications in response to a Digital Input state
 Alarm.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Alarm/EmailBlock, ALARMING, DIN

IO/Inputs/[DIN]/Alarm/EmailBlock Registry Key

NAME
 IO/Inputs/[DIN]/Alarm/EmailBlock

DEFAULT
 None

DESCRIPTION
 This may be used define a custom Email Notification message transmitted when
 the input state alarm is triggered.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Alarm/HoldOff, EMAIL_BLOCK, ALARMING, DIN

IO/Inputs/[DIN]/Alarm/HoldOff Registry Key

NAME
 IO/Inputs/[DIN]/Alarm/HoldOff

DEFAULT
 300000 (milliseconds)

DESCRIPTION
 This defines the amount of time in milliseconds that the Digital Input state
 alarm must remain clear before any subsequent state alarm for this input will
 be acted upon. The default is 300000 or 5 minutes. When an alarm occurs the
 services associated with that event are performed. The alarm must reset and
 remain so for this amount of time before those actions would be performed
 again. Even at this setting an email notification could be sent once every
 5 minutes if the input is actively changing.

SEE ALSO
 HELP Topics: ALARMING, DIN

 Page 180

IO/Inputs/[DIN]/CountState Registry Key

NAME
 IO/Inputs/[DIN]/CountState

DEFAULT
 1 (ON)

DESCRIPTION
 This specifies whether an input transition from OFF to ON is counted (1) or
 if the transition from ON to OFF is counted. The key is set to either 1 or 0
 respectively. By default the counters are advanced when the input state
 transitions from OFF 0 to ON 1.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Count/Units, COUNTING, DIN

IO/Inputs/[DIN]/Count/Units Registry Key

NAME
 IO/Inputs/[DIN]/Count/Units

DEFAULT
 "counts"

DESCRIPTION
 This defines the text decribing the units to be displayed with the associated
 input counter. This Registry key is not specifically used by the operating
 system. It is used by the WebUI and can be referenced by any other application
 requiring a description of the count units.

 The units of count may vary depending on the scaling and sampling options
 used. By default input transitions are simply counted and the counts are
 reported.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Count/Multiplier, COUNTING, DIN

 Page 181

IO/Inputs/[DIN]/Count/Multiplier Registry Key

NAME
 IO/Inputs/[DIN]/Count/Multiplier

DEFAULT
 0.0

DESCRIPTION
 When the Count Multiplier is set to 0.0 (default) the absolute counter value
 is displayed. When a non-zero multiplier is specified the value is used to
 scale the counter value for display. The scaled counter value is also used
 for count alarm trigger points.

 Input pulses are counted and each count may represent some incremental value
 of a quantity measured by the remote sensor. For instance each pulse might
 indicate that 5 gallons of water has passed through a flow sensor. Im this
 example you might set the multiplier IO/Inputs/[DIN]/Count/Multiplier to
 5.0 and the reported units IO/Inputs/[DIN]/Count/Units to "Gallons". The
 WebUI would then report the accumulated gallons as measured.

SEE ALSO
 HELP Topics: IO/Inputs/[DIN]/Count/SampleTime, IO/Inputs/[DIN]/Count/Units

COUNTING, DIN

IO/Inputs/[DIN]/Count/SampleTime Registry Key

NAME
 IO/Inputs/[DIN]/Count/SampleTime

DEFAULT
 0.0 (seconds)

DESCRIPTION
 This defines a sampling period in seconds. A fractional value may be
 specified.

 Normally Counts accumulate until reset separately by the user threw the
 WebUI, JRMON or other application. This is the case when SampleTime is
 set to 0.0 (default). When a nonzero time is defined the counter displays
 the total count accumulated during that period. For instance, with the
 appropriate combination of Multiplier and SampleTime the counter can
 display Revolutions Per Minute (RPM) for a input using a Hall Effect
 sensor mounted on a wheel hub.

NOTES
 When RPM is measured in this fashion it is perhaps better to allow an
 application to perform the calculation. With access to the I/O log and
 the appropriate Java class the application can average pulses over a
 moving window or sample time for the accurate real-time measurement of
 high RPMs. When the wheel is rotating extremely slowly the application can

 Page 182

 then use the pulse-to-pulse timing to derive an estimate of fractional RPMs
 and even the rate of change. This would be a useful approach for use with
 a wind turbine as an example.

SEE ALSO
 HELP Topics: JRMON, COUNTING, DIN

Count Alarms Registry Key

ALARM ENABLES
 IO/Inputs/[DIN]/Count/Alarm1
 IO/Inputs/[DIN]/Count/Alarm2

DEFAULT
 disabled

DESCRIPTION
 Set to enable an alarm when the scaled count exceeds the Limit1 or Limit2
 value as appropriate.

TRIGGER POINTS
 IO/Inputs/[DIN]/Count/Limit1
 IO/Inputs/[DIN]/Count/Limit2

DEFAULT
 0 (zero)

DESCRIPTION
 This defines the trigger point for the associated count alarm. An alarm can
 be generated when the scaled counter exceeds this value.

SEE ALSO
 HELP Topics: COUNTING, DIN

 Page 183

Counter Alarm Email Registry Key

EVENT ENABLE
 IO/Inputs/[DIN]/Alarm1/OnAlarm
 IO/Inputs/[DIN]/Alarm2/OnAlarm

DEFAULT
 disabled

DESCRIPTION
 Set this key to enable services related to the occurrence of Digital Input
 Counter Alarms on this input.

HOLDOFF
 IO/Inputs/[DIN]/Alarm1/HoldOff
 IO/Inputs/[DIN]/Alarm2/HoldOff

DEFAULT
 300000 (milliseconds)

DESCRIPTION
 This defines the amount of time in milliseconds that the Digital Input counter
 alarm must remain clear before any subsequent alarm on this input will be
 acted upon. The default is 300000 or 5 minutes.

 When an alarm occurs the services associated with that event are performed.
 The alarm must reset and remain so for this amount of time before those
 actions would be performed again.

EMAIL ENABLE
 IO/Inputs/[DIN]/Alarm1/Email
 IO/Inputs/[DIN]/Alarm2/Email

DEFAULT
 disabled

DESCRIPTION
 This Registry key enables the Alarm Notification email.

CUSTOM EMAIL NOTIFICATION
 IO/Inputs/[DIN]/Alarm1/EmailBlock
 IO/Inputs/[DIN]/Alarm2/EmailBlock

DEFAULT
 None

DESCRIPTION
 This may be used define a block that creates a unique Alarm Notification
 message.

SEE ALSO
 HELP Topics: EMAIL_BLOCK, COUNTING, DIN

 Page 184

Usage Registry Key

METERED STATE
 IO/Inputs/[DIN]/UsageState

DEFAULT
 1 (ON)

DESCRIPTION
 This specifies whether usage time is accumulated with the input in the ON
 state (1) or in the OFF state (0). The key is set to 1 or 0 respectively.

ALARM ENABLE
 IO/Inputs/[DIN]/Usage/Alarm

DEFAULT
 disabled

DESCRIPTION
 Set this Registry key to enable an alarm when the associated usage meter
 reaches a specified number of hours.

USAGE LIMIT
 IO/Inputs/[DIN]/Usage/Limit

DEFAULT
 0.0

DESCRIPTION
 Defines the alarm setpoint in hours and fractions of hours. The associated
 input goes into alarm when the usage meter reported by $HourMeter reaches
 or exceeds this setpoint.

EVENTS ENABLE
 IO/Inputs/[DIN]/Usage/OnAlarm

DEFAULT
 disabled

DESCRIPTION
 This key may be optionally defined to enable services related to Digital
 Input Usage Alarms.

EMAIL ENABLE
 IO/Inputs/[DIN]/Usage/Email

DEFAULT
 disabled

DESCRIPTION
 This Registry key enables Usage Notification email.

 Page 185

CUSTOM NOTIFICATION
 IO/Inputs/[DIN]/Usage/EmailBlock

DEFAULT
 None

DESCRIPTION
 This may be used define a block that creates a unique Usage Notification
 message.

HOLDOFF
 IO/Inputs/[DIN]/Usage/HoldOff

DEFAULT
 300000 (milliseconds)

DESCRIPTION
 This defines the amount of time in milliseconds that the Digital Input usage
 alarm must remain clear before any subsequent usage alarm on this input will
 be acted upon. The default is 300000 or 5 minutes.

 When an alarm occurs the services associated with that event are performed.
 The alarm must reset and remain so for this amount of time before those
 actions would be performed again.

SEE ALSO
 HELP Topics: $HOURMETER, JRMON, DIN

 Page 186

Relay Outputs Registry Key

OVERVIEW
 The following keys are associated with the Relay Outputs. In each of the
 keys replace the [ROUT] with the appropriate string with channel number ROUT1
 thru ROUT16 depending on the configuration. The Model 410 has 8 relay outputs
 while the Model 412 has 12 and the Model 414 only 4. Power 4ROUT Expansion
 Modules may be added to provide additional relays. The first 16 are addressable
 through the Registry.

IO/Outputs/[ROUT]/Desc Registry Key

NAME
 IO/Outputs/[ROUT]/Desc

DEFAULT
 "Relay Output ##"

DESCRIPTION
 This defines the textual description for the associated Relay Output. This
 Registry key is not specifically used by the operating system. It is used
 by the WebUI and can be referenced by any other application requiring a
 description.

CLOSED STATE
 IO/Outputs/[ROUT]/ClosedDesc

DEFAULT
 "Closed"

DESCRIPTION
 This defines the text shown when the associated relay has been activated
 and is in the CLOSED state. This Registry key is not specifically used by
 the operating system. It is used by the WebUI and can be referenced by any
 other application requiring a description of the output status.

OPEN STATE
 IO/Outputs/[ROUT]/OpenDesc

DEFAULT
 "Open"

DESCRIPTION
 This defines the text shown when the associated relay is in the OPEN state.
 This Registry key is not specifically used by the operating system. It is
 used by the WebUI and can be referenced by any other application requiring
 a description of the output status.

 Page 187

IO/Outputs/[ROUT]/InitialState Registry Key

NAME
 IO/Outputs/[ROUT]/InitialState

DEFAULT
 undefined

DESCRIPTION
 This key is used to define the initial behavior of relay outputs on boot.
 The value defines a pulse duration in milliseconds where an entry of 0
 indicates infinity. Setting the key to a value of 0 would effectively
 close the output. Setting the key to a positive integer would cause the
 output to pulse for the duration defined by the value An undefined or
 negative value (default) results in no action.

NOTES
 On power up all relays are in the inactive state. By default that is the
 OPEN state where the contacts are not conducting. These are Normally Open
 (NO) contacts. Depending on the model certain relays may be reconfigured by
 internal jumper to be Normally Closed (NC). These would be conducting after
 boot. Consider this option if you need a relay to conduct when the JNIOR
 is powered down or after it reboots.

IO/Outputs/[ROUT]/$HourMeter Registry Key

NAME
 IO/Outputs/[ROUT]/$HourMeter

DESCRIPTION
 This dynamically reports the total number of hours that the relay output
 has been in the CLOSED state. This value is non-volatile maintaining content
 through power loss and until it is specifically reset. It is reported here
 in hours to the one-hundredth. The Hour Meter is accurate to the millisecond
 and this high resolution value may be read through the JMP Protocol, the
 JNIOR Protocol or using the JRMON command.

SEE ALSO
 HELP Topics: JRMON, HOURMETER, JMP, JPROTOCOL

 Page 188

Usage Registry Key

NAME
 IO/Outputs/[ROUT]/UsageState

DEFAULT
 1 (CLOSED)

DESCRIPTION
 This specifies whether usage time is accumulated when the relay is in the
 CLOSED state (1) or in the OPEN state (0). The key is set to 1 or 0
 respectively.

 Note that certain relays may be reconfigured from Normally Open (NO) to
 Normally Closed (NC) by jumper. This may affect the choice of metering
 state.

ALARM ENABLE
 IO/Outputs/[ROUT]/Usage/Alarm

DEFAULT
 disabled

DESCRIPTION
 Set to enable an alarm when the associated usage meter reaches the Limit
 specified.

USAGE LIMIT
 IO/Outputs/[ROUT]/Usage/Limit

DEFAULT
 0.0

DESCRIPTION
 Defines the alarm setpoint in hours and may include a fractional part. The
 associated relay output goes into alarm when the usage meter reaches or
 exceeds this setpoint.

EVENTS ENABLE
 IO/Outputs/[ROUT]/Usage/OnAlarm

DEFAULT
 disabled

DESCRIPTION
 This key may be optionally defined to enable services related to Relay
 Output Usage Alarms.

EMAIL ENABLE
 IO/Outputs/[ROUT]/Usage/Email

 Page 189

DEFAULT
 disabled

DESCRIPTION
 This Registry key enables Usage Notification email.

CUSTOM EMAIL NOTIFICATION
 IO/Outputs/[ROUT]/Usage/EmailBlock

DEFAULT
 None

DESCRIPTION
 This may be used define a block that creates a unique Usage Notification
 message.

HOLDOFF
 IO/Outputs/[ROUT]/Usage/HoldOff

DEFAULT
 300000 (milliseconds)

DESCRIPTION
 This defines the amount of time in milliseconds that the Relay Output usage
 alarm must remain clear before any subsequent usage alarm on this input will
 be acted upon. The default is 300000 or 5 minutes.

 When an alarm occurs the services associated with that event are performed.
 The alarm must reset and remain so for this amount of time before those
 actions would be performed again.

SEE ALSO
 HELP Topics: EMAIL_BLOCK

 Page 190

Output Logging Registry Key

LOGGING ENABLE
 IO/Outputs/Log

DEFAULT
 enabled

DESCRIPTION
 This key can be used to disable logging of all of the Relay Outputs. This
 setting requires a reboot.

ENABLE BY OUTPUT
 IO/Outputs/[ROUT]/Log

DEFAULT
 enabled

DESCRIPTION
 This key can be optionally used to disable logging on an output by output
 basis. If an output is going to be rapidly changing the time spent in the
 logging process can degrade system performance. In such circumstances it is
 recommended that logging be disabled for the relay output.

NOTES
 The logging process would impact performance significantly with Series 3
 JNIOR (Models 310, 312 and 314). This was due to the fact that I/O changes
 were immediately logged to the jniorio.log file. With Series 4 JNIOR
 (Models 410, 412, 414 and 412DMX) I/O changes are queued in high-speed
 local memory. This process has little if any impact on performance. The
 jniorio.log file is then generated on-demand using the IOLOG console
 command.

SEE ALSO
 HELP Topics: IOLOG

 Page 191

Serial Comm Registry Key

OVERVIEW
 The JNIOR (Models 410, 412 and 414) support two serial ports, the COM RS-232
 Port and the AUX Serial port. Both ports may be used by application programs
 to communicate with and control other devices. By default the COM port
 provides Diagnostic output information which generally reports status
 during the boot process. Once the product is up and running the COM port
 may be used to access to the JANOS Command Line Console. This can be disabled
 using the MODE command to insure dedicated communications with external
 equipment.

 The default communications parameters are 115.2K baud, 8 data bits, 1 stop
 bit with no parity or handshake. The COM port supports only 3-wire
 communications. This port does not include hardware handshake lines. The
 AUX port provides for RTS and CTS handshake signals which may be optionally
 enabled. In addition the AUX port on the Model 410 may be configured for
 RS-422 or RS-485 communications. In the latter case the output driver may
 be software controlled supporting multi-drop serial networks.

NOTES
 Access to the Command Line Console may be enabled for the AUX Serial port
 on a session by session basis using the MODE command.

 The AUX Serial port is also supported by the IOLOG command. A bi-directional
 transmission log is maintained showing recent communications. This data can
 be displayed or saved to an auxio.log file for further analysis. It is a
 very useful diagnostic tool.

 The Model 412DMX eliminates the AUX Serial port. It is replaced by a dedicated
 DMX512 Universe 5-pin output.

SEE ALSO
 HELP Topics: MODELS, COM, AUX, MODE, IOLOG

 Page 192

AUX Serial Registry Key

OVERVIEW
 The AUX Serial port is available on Models 410, 412, and 414 JNIOR products.
 It is located at the top of the JNIOR next to the POWER and Sensor Port
 Expansion Bus connections. This port supports RS-232 communications with
 optional capability for RTS/CTS hardware handshake. A software XON/XOFF
 handshake for pacing communications is also possible.

 The Model 410 additionally supports RS-422 and RS-485 communications that
 provide longer distance communications capabilities or multi-device serial
 networking. It is possible to configure a Model 410 to generate a standard
 DMX512 Universe output for controlling stage lighting.

NOTES
 The AUX Serial Port is not available on the Model 412DMX. This is replaced
 by a dedicated 5-pin DMX output channel.

SEE ALSO
 HELP Topics: AUX_PORT

 Page 193

AUX Serial Registry Key

BAUDRATE
 AUXSerial/Baudrate

DEFAULT
 115200 (115.2 kBaud)

DESCRIPTION
 The default baud rate is 115.2K baud. The communications baud rate may be
 modified through this Registry key either directly, by application program
 or using the WebUI. Valid settings are:

 250000, 128000, 115200, 57600, 38400, 31250, 28800, 19200,
 14400, 9600, 4800, 2400, 1200, 600, 300, 150, and 110

 The 250K baud setting is for supporting the DMX512 standard used by stage
 lighting equipment over RS-485.

DATABITS
 AUXSerial/Databits

DEFAULT
 8 (bits)

DESCRIPTION
 The default setting is 8 data bits. Valid settings are 7 and 8. The 7 data
 bit mode is most often used with either ODD or EVEN parity wherein the parity
 bit is added maintaining the normal 8 bit stream.

STOPBITS
 AUXSerial/Stopbits

DEFAULT
 1 (bits)

DESCRIPTION
 The default setting is 1 stop bit. Valid settings are 1 or 2. The typical
 asynchronous receiver always recognizes the end of a character using a single
 stop bit since there can be any amount of time between characters unless the
 protocol specifically sets a timeout. The transmitter uses this stop bit
 setting to stretch the minimum time between characters by one extra bit time.

PARITY
 AUXSerial/Parity

DEFAULT
 NONE

DESCRIPTION
 The default setting is for No Parity (NONE or 0). Valid settings are 0, 2
 and 3 where 0 means No Parity or NONE, 2 indicates EVEN parity and 3 ODD

 Page 194

 parity. An additional bit is added to the transmitted stream when EVEN or
 ODD parity is specified. When either EVEN or ODD is specified the received
 data is expected to contain a parity bit which is checked and removed. This
 bit is in addition to that specified by the data bit setting.

SEE ALSO
 HELP Topics: AUX_PORT, AUX_FLOW

AUXSerial/Flow Registry Key

NAME
 AUXSerial/Flow

DEFAULT
 0 (NO_CONTROL)

DESCRIPTION
 The default setting is NO_CONTROL or 0 meaning that no flow control or
 handshaking either by hardware or software is used. For the AUX port the
 valid settings are:

 0 (NO_CONTROL)
 1 (RTSCTS_IN)
 2 (RTSCTS_OUT)
 3 (RTSCTS)
 4 (XONXOFF_IN)
 8 (XONXOFF_OUT)
 12 (XONXOFF)

 The RTSCTS_IN setting uses the available CTS hardware handshake line to
 control the flow of data from an external source (IN). To hold off incoming
 data the JNIOR activates the CTS line when internal buffers near capacity.
 In RTSCTS_OUT mode the AUX port monitors the RTS line and stops transmission
 when it is activated. The RTSCTS mode employs the handshake bidirectionally.

 The XONXOFF_IN handshake transmits the XOFF character (Ctrl-S 0x13) when
 internal buffers reach capacity to hold off the incoming data. The XON
 character (Ctrl-Q 0x11) is later sent to resume communications. Similarly in
 XONXOFF_OUT mode the AUX port listens for the XOFF character and stops
 transmission when received. When a subsequent XON character is received the
 communications resume. Both the XON and XOFF characters are filtered from
 the stream. The XONXOFF setting applies these rules bidirectionally.

SEE ALSO
 HELP Topics: AUX_PORT, AUX_RS485, ASCII

 Page 195

AUXSerial/RS485 Registry Key

NAME
 AUXSerial/RS485

DEFAULT
 disabled

DESCRIPTION
 By default the RS485 mode is disabled. RS485 communications are only available
 with the Model 410 JNIOR. When enabled the RX, TX, RTS and CTS lines are
 reconfigured. The transmit drivers are disabled and can be controlled by the
 application program.

 Originally the Model 410 JNIOR included internal jumpers allowing the unit
 to be configured for RS-422 or RS-485 wiring including optional termination
 resistors. In general these requirements are now achieved with external
 wiring. Some 410 PCBs still have an unpopulated location for jumpers that
 may be used.

SEE ALSO
 HELP Topics: AUX_PORT, AUX_FLOW

COM Serial Registry Key

OVERVIEW
 The COM RS-232 port is located at the bottom of the JNIOR next to the Ethernet
 LAN connector. This port supports 3-wire RS-232 communications with
 optional capability for software XON/XOFF handshake for pacing communications.

 By default the COM port also provides diagnostic output during boot and
 serves as a serial access point to the Command Line Console. This port is
 available for connection to remote equipment.

 In connecting a remote serial device it is recommended that you first use
 the AUX port. The AUX port is by default dedicated to application use; It
 is supported by IOLOG providing comprehensive transmission logging; It
 provides no unexpected output such as diagnostics; And, there are additional
 communications lines and communication modes.

NOTES
 The MODE -S command can be used to silence diagnostic output and to disable
 access to the Command Line Console. The Boot Dialog may also be disabled
 through the WebUI under the Serial I/O Configruation tab.

SEE ALSO
 HELP Topics: COM_PORT, AUX_PORT, MODE, IOLOG

 Page 196

COMSerial/BootDialog Registry Key

NAME
 COMSerial/BootDialog

DEFAULT
 enabled

DESCRIPTIOTN
 The COM port by default supplies reports during the boot process. Once the
 unit is up and running this port can also be used to access the command
 line console. When the port is employed in communicating with another device
 these messages can cause protocol issues. The unwanted messages can be
 disabled using this Registry key.

 Note that the application program should also disable the boot dialog and
 command line capabilities to insure reliable port use. This is done using
 the com.integpg.comm.COMSerialPort.setBootDialog() static method. This
 can also be controlled from the command line using the MODE -S command.

 Diagnostic port information is included in the jniorboot.log file. This
 eliminates the prior need to observe the boot through the serial port while
 debugging. Additionally, the jniorboot.log.bak file accumulates prior boot
 detail providing an expanded record of boot detail.

NOTES
 Log retention can be greatly expanded by running the JBakup utility.

SEE ALSO
 HELP Topics: COM_PORT, MODE, JBAKUP

COM Serial Registry Key

BAUDRATE
 COMSerial/Baudrate

DEFAULT
 115200 (115.2 kBaud)

DESCRIPTION
 The default baud rate is 115.2K baud. The communications baud rate may be
 modified through this Registry key either directly, by application program
 or using the WebUI. Valid settings are:

 250000, 128000, 115200, 57600, 38400, 31250, 28800, 19200,
 14400, 9600, 4800, 2400, 1200, 600, 300, 150, and 110

 Page 197

DATABITS
 COMSerial/Databits

DEFAULT
 8 (bits)

DESCRIPTION
 The default setting is 8 data bits. Valid settings are 7 and 8. The 7 data
 bit mode is most often used with either ODD or EVEN parity wherein the
 parity bit is added maintaining the normal 8 bit stream.

STOPBITS
 COMSerial/Stopbits

DEFAULT
 1 (bits)

DESCRIPTION
 The default setting is 1 stop bit. Valid settings are 1 or 2. The typical
 asynchronous receiver always recognizes the end of a character using a single
 stop bit since there can be any amount of time between characters unless the
 protocol specifically sets a timeout. The transmitter uses this stop bit
 setting to stretch the minimum time between characters by one extra bit time.

PARITY
 COMSerial/Parity

DEFAULT
 0 (NONE)

DESCRIPTION
 The default setting is for No Parity (NONE or 0). Valid settings are 0, 2
 and 3 where 0 means No Parity or NONE, 2 indicates EVEN parity and 3 ODD
 parity. An additional bit is added to the transmitted stream when EVEN or
 ODD parity is specified. When either EVEN or ODD is specified the received
 data is expected to contain a parity bit which is checked and removed. This
 bit is in addition to that specified by the data bit setting.

SEE ALSO
 HELP Topics: COM_PORT, COM_FLOW

 Page 198

COMSerial/Flow Registry Key

NAME
 COMSerial/Flow

DEFAULT
 0 (NO_CONTROL)

DESCRIPTION
 The default setting is NO_CONTROL or 0 meaning that no flow control or
 handshaking is used. For the COM RS-232 port the valid settings are:

 0 (NO_CONTROL)
 4 (XONXOFF_IN)
 8 (XONXOFF_OUT)
 12 (XONXOFF)

 The COM port does not support hardware handshaking.

 The XONXOFF_IN handshake transmits the XOFF character (Ctrl-S 0x13) when
 internal buffers reach capacity to hopefully hold off the incoming data.
 The XON character (Ctrl-Q 0x11) is later sent to resume communications.
 Similarly in XONXOFF_OUT mode the COM port listens for the XOFF character
 and stops transmission when received. When a subsequent XON character is
 received the communications resume. Both the XON and XOFF characters are
 filtered from the stream. The XONXOFF setting applies these rules
 bidirectionally.

SEE ALSO
 HELP Topics: COM_PORT, ASCII

 Page 199

ZIP/JAR Compression Registry Key

OVERVIEW
 JANOS supports ZIP library files. In fact the WebServer uniquely uses a ZIP
 library to create virtual folders allowing an entire website to be contained
 within a single file. Applications written in Java utilize a JAR library which
 is nothing more than a renamed ZIP file.

 ZIP/JAR files usually contain multiple files in an efficient compressed form.
 The compression is performed when files are added to a library. While there
 are optional compression algorithms, JANOS supports the DEFLATE compression.
 This is compatible with libraries generated by most systems.

 The ARC command, and its aliases ZIP and JAR, can be used at the command line
 to manage a compressed library file. When adding files the necessary
 compression is handled by JANOS. There are a couple of options affecting
 the compression procedure and these are controlled by Registry settings.
 Changes in these settings do not affect the ability to extract files from
 libraries generated with other settings by the JNIOR or any remote PC.

SEE ALSO
 HELP Topics: ZIP

Zip/Window Registry Key

WINDOW PARAMETER
 Zip/Window

DEFAULT
 16384

DESCRIPTION
 The DEFLATE algorithm compresses a file by locating combinations of bytes
 or characters that repeat. The redundancy is removed and replaced by an
 efficient pointer to the original grouping. The most efficient compression
 then would remove any and all redundant groups from an entire file. This is
 certainly possible for small files. With large files the pointers need to
 address data further and further away. As the distance grows so do the
 pointers and efficiency suffers. The solution is to limit the distance using
 a sliding window through the file.

 By default JANOS uses a 16KB (16384 byte) sliding window. This Registry key
 may be used to adjust the window from a minimum of 2KB (2048) to a maximum of
 32KB (32768). In practice there should be no reason to alter this setting. A
 change in this setting affects the very next compression that is performed.

 Page 200

DEPTH PARAMETER
 Zip/Depth

DEFAULT
 256

DESCRIPTION
 With each successive character in a file the compressor looks back over
 the sliding window for groupings where replacement by pointer would
 provide the greatest compression. This is a time consuming endeavor. As a
 tradeoff the JANOS routine employs a queue of likely targets in the window
 for each unique character. This reduces the search effort and the time it
 takes to perform the compression.

 By default the search queue depth is set at 256 entries. Values may range
 from a minimum of 16 to a maximum of 1024. In practice there should be no
 reason to alter this setting. A change in this setting affects the very
 next compression that is performed.

SEE ALSO
 HELP Topics: ZIP, COMPRESSION

 Page 201

JMP Protocol

OVERVIEW
 The JANOS Management Protocol (JMP) is available to remote devices and
 computers for control and management of the JNIOR. Available by default
 on Port 9220 this protocol replaces the deprecated JNIOR Protocol and
 provides for better security and a greater range of capabilities. The
 protocol is based on the JSON data-interchange format.

 The JNIOR WebUI also uses JMP through a Websockets connection to perform
 all of the functions it offers.

 While the JNIOR Protocol remains a viable option for controlling and
 monitoring I/O on the JNIOR the JANOS Management Protocol or JMP
 (pronounced "JuMP") offers a single connection point allowing the JNIOR
 to be fully managed and monitored. The older binary JNIOR Protocol can be
 a challenge to implement and is not recommended for new development.

SEE ALSO
 HELP Topics: JMPCONNECT, JSON

JMP Protocol

DESCRIPTION
 There are two methods of achieving a JMP protocol connection. Both provide
 access to the full capabilities of the protocol.

WEBSOCKET
 A WebSocket connection creates a full-duplex communications channel as would
 be available by direct connection to a TCP port but using the HTTP or HTTPS
 mechanism. This enables direct interaction between a website and JANOS.
 By default a WebSocket channel supports the JMP protocol. This is how the
 JNIOR WebUI performs tasks such as are available through the Folders, Console
 and Syslog tabs.

 Websocket has been standardized by the IETF https://www.ietf.org/ as
 RFC 6455 https://tools.ietf.org/html/rfc6455 . The JNIOR WebUI is installed
 by the file /flash/www/config.zip and in particular the JavaScript file
 comm.js in that library handles the Websocket communications. You are free
 to use that source code as reference or to incorporate any part of it in your
 custom website.

 Note that the JMP protocol requires a login. This is critical as the protocol
 is very powerful. When a website login to the JNIOR is successful (or if the
 login is disabled) a Session Cookie is generated. This is passed when a
 related HTTP connection is elevated to Websocket. It then is accepted as a
 valid login credential providing seamless operation.

PROTOCOL PORT
 By default a connection to TCP Port 9220 provides direct access to the JMP
 protocol. In this case there is a special wrapper that must be used in

 Page 202

 transporting the JSON messages.

 One of the issues in using JSON in communications protocols stems from the
 lack of message length information. In the absence of a length the
 communications driver must count open '{' and close '}' curly braces in
 order to ascertain when an entire structure has been read from the channel.
 This is complicated by the fact that curly braces may appear in string data
 and those must be ignored. The algorithm, while not complicated, is an
 annoyance. The JMP connection uses a wrapper that conveys a message length.

 Once a successful connection is made to the JMP Server port, messages may be
 exchanged. With one exception all messages conform to the JSON format using
 the ASCII printable character set. The high-level message format must be as
 follows. This forms the message wrapper which is a 2-element JSON Array
 construct.

 [length , object]

 Where length defines the exact size of the object in bytes excluding leading
 and trailing white-space if any. Leading and trailing white-space, which can
 include newline characters, may be present surrounding both the length value
 and the object. Here object must be a fully formed and valid JSON Object
 beginning with '{' and ending with '}' curly braces. Both these curly braces
 and any characters in between are included in the length value. The leading
 '[' opening square bracket, ',' comma, and trailing ']' closing square bracket
 are required. The opening and closing JSON Object curly braces are also
 verified. If there is any violation to this format the message will be simply
 ignored. There is no response or indication of error. All bytes outside of
 the square brackets are ignored as well.

 A valid parsing strategy would be as follows:

 * Read and ignore bytes up to a '[' opening square bracket
 * Read and ignore white-space characters (space, tab, newline, etc.)
 * Accumulate a decimal length (must be digits 0-9, the result must be >= 2)
 * Read and ignore white-space
 * Read and confirm the presence of the ',' comma
 * Read and ignore white space
 * Extract the JSON Object of precise length defined by the numeric value
 * Read and ignore white-space
 * Read and confirm the ']' closing square bracket (no other character
 is acceptable)
 * Confirm that the JSON object is properly enclosed by '{' and '}'
 curly braces
 * Process the JSON object and repeat

 This wrapper is not used by the Websocket connection since Websocket already
 includes message length information.

EXAMPLE
 All TCP/IP Port 9220 communications utilize the 2-element JSON Array format
 for conveying valid JSON Objects. This is not used in WebSocket communications.
 In describing JMP protocol Messages the 2-element JSON Array format will be
 assumed. We will only show the enclosed JSON Objects.

 Page 203

 To initialize communications the client should send a blank or empty message.
 The following is acceptable.

 {
 "Message":""
 }

 This message properly formatted for JMP Port 9220 would be transmitted as
 follows.

 [14,{"Message":""}]

 The connection will proceed depending on the authentication requirements
 established by configuration and the client environment for the connection.

NOTES
 It is important to note that the TCP/IP connection is a streaming channel
 and one or more network packets may be required to convey an entire message.
 Similarly a packet may include the final bytes of one message and those
 beginning the next. A reliable implementation will buffer incoming data until
 an entire message is received. Once the message is processed it is removed
 from the buffer leaving any additional data which will be required to form
 the message that follows.

 JMP is not Master-Slave. Many requests do solicit a response but not all.
 There are also unsolicited messages produced by the server. These alert the
 client to I/O changes as well as many other events.

 The protocol allows you to specify any amount of META data with your
 request. That data is echoed in the associated response. This can be used
 to maintain synchronization between request and response. It is a very
 flexible means of synchronization and can be used to convey, for example,
 detailed processing instructions for the response.

SEE ALSO
 HELP Topics: SECURITY, JMP, JSON

 Page 204

JMP Protocol

SECURITY
 Any protocol providing control and management functions must employ some
 form of security preventing unauthorized access and abuse. By default the
 JMP Server requires authentication (login). While the login requirement
 may be disabled it is not recommended. When the login is disabled an account
 must be specified for the anonymous login. This is configured through the
 Registry. We strongly urge you to accommodate the login requirement.

 In addition to user authentication the JMP Server supports a TLSv1.2 secure
 connection. A secure connection is established by first connecting to the
 JMP Server port and issuing the following clear-text command exactly as
 shown below. This is the one exception to the 2-element JSON Array formatting
 mentioned earlier.

 [STARTTLS]

 Immediately following the ']' closing square bracket the JNIOR will begin a
 SSL/TLS negotiation. The client should expect to do the same. If successful
 all further communications will be encrypted.

NOTES
 When accessing JMP through a Websocket connection the login credentials that
 may have been used to access the website are passed through a Session Cookie.
 This creates seamless use under the browser. If for any reason the cookie is
 out of date, the Websocket driver in comm.js in the WebUI distribution file
 /flash/www/config.zip will initiate its own login dialog requesting new
 credentials.

 A Websocket secure connection is achieved by using the WSS:// URL protocol
 specifier as opposed to WS:// . The WebUI utilizes that appropriate
 protocol to track with either HTTPS:// or HTTP:// respectively.

SEE ALSO
 HELP Topics: INITIALIZE, JMP, JMPCONNECT

 Page 205

JMP Protocol

INITIAL CONNECTION
 To initialize communications the client should send a blank or empty message.

 {
 "Message":""
 }

 This message properly formatted for JMP Port 9220 would be transmitted as
 follows.

 [14,{"Message":""}]

 The connection will proceed depending on the authentication requirements
 established by configuration and the client environment for the connection.

 With the login requirement the exchange will proceed as follows. In this
 example the client properly utilizes the supplied Nonce to properly calculate
 a digest inclusive of the login credentials for the username 'jnior'. The
 response indicates successful login and that the account has Administrator
 and Control permissions. All Administrators have the ability to control the
 JNIOR. Not all accounts with Control permission are administrators.

 TRANSMITTED RECEIVED

 {
 "Message":""
 }

 {
 "Message":"Error",
 "Text":"401 Unauthorized",
 "Nonce":"5d894efb48e1c3bc074fe78e7a5f"
 }

 {
 "Auth-Digest":"jnior:65f2d1cb66ef63f7d17a764f3a2f2508"
 }

 {
 "Message":"Authenticated",
 "Administrator":true,
 "Control":true
 }

 A "Monitor" message will likely immediately follow. This might even be
 received before the "Authenticated" message. That is the asynchronous
 nature of the connection.

DIGEST CALCULATION
 When the JMP connection requires a login it will respond with a
 "401 Unauthorized" error text. The server provides a unique "Nonce"
 string as part of this message. This can be used in conjunction with the
 username and password to calculate the appropriate Authorization Digest.

 Page 206

 This requires a MD5 message digest calculation which generates a 16 byte
 digest represented as 32 hexadecimal characters. The calculation proceeds
 as follows:

 Digest = Username + ":" + MD5(Username + ":" + Nonce + ":" + Password)

 Where Username, Password, Nonce and Digest are all strings. The resulting
 Digest string is returned in the "Auth-Digest" member. Here is an example
 login with the default administrator's account.

 TRANSMITTED RECEIVED

 {
 "Message":""
 }

 {
 "Message":"Error",
 "Text":"401 Unauthorized",
 "Nonce":"bc581a9683d3e1857218db135e4b"
 }

 {
 "Auth-Digest":"jnior:6b7b418f223e7e0dc600c41c7b6644b3"
 }

 {
 "Message":"Authenticated",
 "Administrator":true,
 "Control":true
 }

SEE ALSO
 HELP Topics: MESSAGING, SECURITY, JMP, JMPCONNECT

 Page 207

JMP Protocol

MESSAGING
 The JMP server implementation is not Master-Slave however there are a number
 of 'Requests' that have 'Responses' which is typical for such a server. In
 addition to this, unsolicited messages may be received from the server. These
 provide immediate notification for changes in I/O status and updates in
 configuration settings for instance. Any use of this implementation must
 handle the presence of unsolicited messages. Care is also required to pair
 responses with the associated requests as messaging order is not guaranteed.
 Optional Meta data supplied with a Request is returned with the Response
 unmodified. This can then be used to identify each response and the action
 it then requires.

Common Message Structure
 All messages use JSON formatting. Each consists of a set of members enclosed
 by curly braces '{' and '}'. An empty set is acceptable '{}' although it
 would be ignored by the server and solicit no response. A set may consist of
 any number of members separated by commas. Each member represents a name/value
 pair where the name is separated from the value by a colon ':'. The value
 can be a string, number, object, array, true, false or null. The members are
 referenced by name and therefore may appear in any order. An array however
 consists of 0 or more elements each of which are values separated by a commas
 and presented in sequence dependent order.

THE MESSAGE MEMBER
 JMP requires that each valid message contain a 'Message' member. This is a
 name/value pair where the name is exactly the string "Message" and the value
 separated by the colon be any one of the following.

 Client generated messages:

 "Status"
 "Control"
 "Registry List"
 "Registry Read"
 "Registry Write"
 "Registry Write Encrypted"
 "Enumerate Devices"
 "Read Devices"
 "Write Devices"
 "Console Open"
 "Console Stdin"
 "Console Close"

 Server generated responses:

 "Registry List Response"
 "Registry Response"
 "Enumerate Devices Response"
 "Read Devices Response"
 "Write Devices Response"
 "Console Response"
 "Error"
 "Authenticated"

 Page 208

 Server generated messages (unsolicited):

 "Monitor"
 "Registry Update"
 "Console Stdout"

 Messages received by the server not containing a valid "Message" member are
 ignored. These will not cause an error or solicit any response.

META MESSAGE MEMBER
 The "Meta" message member is entirely optional and since its associated value
 may be an object it can contain any information and any amount of information.
 The value of this message pair is ignored by the server. However, the entire
 pair is returned unmodified with the associated response. The "Meta" object
 then can contain detailed application specific information that later can be
 used by the client to synchronize Responses and Requests or to determine
 any other appropriate course of action when the Response is received.

GENERAL MESSAGE CONTENT
 Any number of message members may appear in the message although only those
 appropriate for the specific request will be used. All others will be ignored.
 One possible use for any extra message members beyond those required by the
 request is in providing debug information when viewed/logged on the wire
 using Wireshark https://wireshark.org for instance.

SEE ALSO
 HELP Topics: INITIALIZE, JMP, JMPCONNECT

 Page 209

JMP Protocol

MONITOR MESSAGE
 Here is an example of the "Monitor" message. In addition to the State and
 Count for each Digital Input in sequence and Relay Output in sequence, there
 is information about the JNIOR including a timestamp. The "Monitor" message
 will be sent by the server whenever any I/O status changes.

 {
 "Message":"Monitor",
 "Model":"410",
 "Version":"v1.4",
 "Serial Number":614070500,
 "Inputs":[
 {"State":1,"Count":49},
 {"State":0,"Count":360},
 {"State":0,"Count":8},
 {"State":0,"Count":38},
 {"State":0,"Count":3},
 {"State":0,"Count":4},
 {"State":0,"Count":5},
 {"State":0,"Count":7}
],
 "Outputs":[
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0}
],
 "Timestamp":1444155435066
 }

 Note that the number of inputs and outputs vary depending on the model of
 JNIOR and number of 4ROUT external modules. The standard Model 410 has 8
 inputs and 8 outputs. The Model 412 has an additional 4 outputs for 12 and
 correspondingly less inputs where there are only 4. Similarly the Model 414
 has 4 additional inputs for 12 and correspondingly fewer outputs where there
 are only 4.

 There may be additional outputs included. The JNIOR will include up to 8
 additional Relay Outputs from up to 2 external 4ROUT modules in this message.
 The order in which the external relay modules are assigned into the output
 sequence is managed by the Registry and the EXTERN command based upon each
 external module's ID.

 Page 210

JMP Protocol

STATUS REQUEST
 The "Monitor" message previously discussed is an unsolicited message however,
 the message may be requested using the "Status" request message. This is not
 typically required as a "Monitor" message is sent immediately after a
 connection is authenticated and whenever there is a change thereafter. If for
 any reason this initial message is not processed you can request the
 information using the "Status" request.

 TRANSMITTED RECEIVED

 {
 "Message":"Status"
 }

 {
 "Message":"Monitor",
 "Model":"410",
 "Version":"v1.4",
 "Serial Number":614070500,
 "Inputs":[
 {"State":1,"Count":49},
 {"State":0,"Count":360},
 {"State":0,"Count":8},
 {"State":0,"Count":38},
 {"State":0,"Count":3},
 {"State":0,"Count":4},
 {"State":0,"Count":5},
 {"State":0,"Count":7}
],
 "Outputs":[
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0},
 {"State":0}
],
 "Timestamp":1444155435066
 }

 Recall that messages are encapsulated with length information. Just as a
 reminder the Status request/command is actually sent as follows where
 whitespace outside of the JSON content is ignored:

 [20, {"Message":"Status"}]

 Page 211

JMP Protocol

CONTROL MESSAGES
 Each "Control" message must contain a "Command" member which may be one of
 the following valid values:

 "Toggle"
 "Close"
 "Open"
 "Reset Latch"
 "Reset Counter"
 "Reset Usage"

 Each "Control" Message must contain a numeric "Channel" member specifying
 the input/output channel. This parameter is 1-based where the number '1'
 specifies either the first Digital Input or first Relay Output. This depends
 on the specific "Command".

 There is no formal response to these command messages although a "Monitor"
 message will invariably follow some for obvious reasons. Monitor messages
 are sent whenever I/O status changes. These may be unsolicited but if the
 control message alters I/O status the Monitor message is a logical response.
 If the control message does not alter I/O status there is no response.

TOGGLE COMMAND
 The "Toggle" command inverts the state of the defined output "Channel". If the
 relay is open it will be closed. If it is closed it will be opened. The
 optional "Duration" member parameter if positive and non-zero specifies the
 milliseconds before the relay is to be returned to its original state.
 Therefore the following will close Relay Output 1 assuming that it originally
 is open.

 {
 "Message":"Control",
 "Command":"Toggle",
 "Channel":1
 }

 Similarly the following will pulse Relay Output 2. Assuming that originally
 the relay is open, it will be closed for precisely 5000 milliseconds
 (5 seconds).

 {
 "Message":"Control",
 "Command":"Toggle",
 "Channel":2,
 "Duration":5000
 }

 Note then that this last version of the Toggle control message will result
 in 2 Monitor messages. One when the relay closes and another 5 seconds later
 when it opens.

CLOSE COMMAND
 The "Close" command closes the defined output "Channel". If the relay is open

 Page 212

 it will be closed. If it is closed it will remain closed (state = 1). The
 optional "Duration" member parameter if positive and non-zero specifies the
 milliseconds before the relay is to be returned to its original state.
 Therefore the following will close Relay Output 1.

 {
 "Message":"Control",
 "Command":"Close",
 "Channel":1
 }

 Similarly the following will pulse Relay Output 2. It will be closed for
 precisely 5000 milliseconds (5 seconds). There will be no change if the
 relay is already closed.

 {
 "Message":"Control",
 "Command":"Close",
 "Channel":2,
 "Duration":5000
 }

OPEN COMMAND
 The "Open" command opens the defined output "Channel". If the relay is open
 it will remain so (state = 0). If it is closed it will be opened. The optional
 "Duration" member parameter if positive and non-zero specifies the milliseconds
 before the relay is to be returned to its original state. Therefore the
 following will open Relay Output 1.

 {
 "Message":"Control",
 "Command":"Open",
 "Channel":1
 }

 Similarly the following will pulse Relay Output 2. It will be opened for
 precisely 5000 milliseconds (5 seconds). There will be no change if the relay
 is already open.

 {
 "Message":"Control",
 "Command":"Open",
 "Channel":2,
 "Duration":5000
 }

BLOCK COMMAND
 The "Block" command allows the state of one or more relays to be changed
 simultaneously. The "Mask" parameter selects the relay or relays to be affected
 by the command. Here the presence of a '1' bit indicates that the associated
 relay state is to be affected. The parameter's least significant bit (LSB)
 represents Relay Output 1. The corresponding bit in the "States" parameter
 defines the new state of the associated relay where a '1' indicates that the
 relay is to be closed, a '0' it is to be opened. The optional "Duration" member
 parameter if positive and non-zero specifies the milliseconds before the relay

 Page 213

 is to be returned to its original state. Therefore the following will close
 Relay Outputs 1 and 3 and open Relay Output 2 all at the same time.

 {
 "Message":"Control",
 "Command":"Block",
 "Mask":7
 "States":5
 }

 Similarly the following will pulse Relay Outputs 1 and 2 for precisely 5000
 milliseconds (5 seconds).

 {
 "Message":"Control",
 "Command":"Block",
 "Mask":3,
 "States":3
 "Duration":5000
 }

RESET LATCH COMMAND
 Latching may be enabled for any of the digital inputs. This is a form of event
 capture which can be very useful in monitoring pulsed signals. A latching
 input may be set to trigger on either a positive going or negative going
 signal edge. In waiting for the event the input is considered to be armed.
 When the trigger signal is detected the input changes state.

 A LatchTime may be configured. This defines a timer setting. The timer starts
 when the event occurs and the input signal is automatically reset when it
 expires. This provides for a form of pulse stretching. With a latch time of
 10 seconds, pulsing an input for a mere 1 millisecond results in the input
 being activated for 10 seconds. The very brief event is captured. The result
 is signaled for a period long enough to alert any monitoring system.

 If LatchTime is not configured (default is 0) or configured for 0 seconds
 there will be no automatic reset. The input state indicating the capture of
 an event must be manually reset or reset by the monitoring system using the
 "Reset Latch" command. An example message follows.

 {
 "Message":"Control",
 "Command":"Reset Latch",
 "Channel":2
 }

RESET COUNTER COMMAND
 Input transitions are tallied. The counter can be configured to tally positive
 going or negative going edges. This provides an indication of the total number
 of input pulses detected. The JNIOR can count signals up to 2 kHz but is
 typically employed to count more reasonable paced events. At some point there
 may be a need to reset the counts to 0. This might occur each time this "meter"
 is read for instance and perhaps on a monthly basis. The following command
 does the job.

 Page 214

 {
 "Message":"Control",
 "Command":"Reset Counter",
 "Channel":3
 }

RESET USAGE COMMAND
 Often it is necessary to keep track of how long that a piece of equipment is
 in use. The JNIOR tallies the time that either an input or an output is active.
 Each I/O point can be configured to tally usage time for either the high/1/ON
 state or the low/0/OFF state. It is reported as a fraction of hours. At some
 point you may need to reset this Usage Meter. The following command does the
 job.

 {
 "Message":"Control",
 "Command":"Reset Usage",
 "Channel":11
 }

 The JNIOR maintains 16 separate usage meters representing the 16 internal I/O
 points. This covers a mixture of inputs and outputs that varies depending on
 JNIOR Model. In this example, if we are running a Model 410 with 8 inputs and
 8 outputs, we are resetting the Usage Meter for Relay Output 3. Channels 1
 through 8 are inputs and 9 through 16 then correspond to Relay Outputs 1
 through 8. So for this example Channel 11 is Relay Output 3.

 Page 215

JMP Protocol

FILE SYSTEM COMMANDS
 The JNIOR supports a file system comparable to that on the PC. It is not
 possible to support, maintain or program a JNIOR without access to the file
 system. The JMP Server provides access to files for reading and writing
 depending on login permissions. This then provides for the greatest flexibility
 in application development.

FILE LIST REQUEST
 The "File List" message is used to request a listing of files in a particular
 directory/folder within the file system. This solicits a "File List Response"
 message providing the content. The response echoes the requested "folder"
 specification and supplies the "Content" as an array of objects each specifying
 the "Name", "Size", and last modification timestamp "Mod" for the file or
 folder. Note that a folder is distinguished from a file by the inclusion of
 a trailing '/' in the name. The folder's size is a count of the items it
 contains. A trailing '/' is not necessary in the folder specification.

 A typical exchange follows. The response message can be quite extensive
 depending on the number of files your system stores.

 TRANSMITTED RECEIVED

 {
 "Message":"File List",
 "Folder":"/"
 }

 {
 "Message":"File List Response",
 "Folder":"/",
 "Content":[
 {
 "Name":"etc/",
 "Size":1,
 "Mod":"07 Jul 2016 10:25"
 },
 {
 "Name":"temp/",
 "Size":0,
 "Mod":"14 Sep 2016 13:16"
 },
 {
 "Name":"flash/",
 "Size":38,
 "Mod":"23 Sep 2016 07:50"
 },
 {
 "Name":"manifest.json",
 "Size":32698,
 "Mod":"29 Jul 2016 10:26"
 },
 {
 "Name":"jniorsys.log.bak",

 Page 216

 "Size":65557,
 "Mod":"20 Sep 2016 15:49"
 },
 {
 "Name":"jniorsys.log",
 "Size":16526,
 "Mod":"23 Sep 2016 07:52"
 },
 {
 "Name":"jniorboot.log.bak",
 "Size":1056,
 "Mod":"23 Sep 2016 07:33"
 },
 {
 "Name":"jniorboot.log",
 "Size":1010,
 "Mod":"23 Sep 2016 07:50"
 }
]
 }

FILE READ REQUEST
 The "File Read" operation is used to obtain the data for a single file. Data
 is returned using Base64 encoding. This allows for the transfer of files
 containing binary data. The "Encoding" parameter indicates "base64". At this
 time this is the only encoding that is supported. The "Size" parameter
 indicates the size of the file and the length of the decoded content of the
 "Data" parameter.

 TRANSMITTED RECEIVED

 {
 "Message":"File Read",
 "File":"/flash/www/config/folder.png"
 }

 {
 "Message":"File Read Response",
 "File":"/flash/www/config/folder.png"
 "Size":329,
 "Encoding":"base64",
 "Data":"iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAIAAA...
 UQBG+9eyXUtY0pRt27bXtsaWXGtYss2L533Xej...
 NEN3vhsJvBA4DS7r5GwgK9bjkyDG7DmNWoxSyw...
 RuNikAzjk6AWQvVxDk5KcFEN0QjZAtUG3Q6zh9...
 1bhsgLhZhDQjGZIvhUVvuRqhd5NxxEXKcVHHx+...
 ",
 "Status":"Succeed"
 }

 Page 217

READING LARGE FILES
 For very large files the "File Read Response" can become quite huge. This can
 lead to memory and performance concerns. Fortunately you can optionally use
 "Limit" and "Offset" parameters to read sections of the file while limiting
 the "data" content size. Repeated "File Read" requests can then be used to
 retrieve the entire file. This is also useful if the application requires the
 retrieval of only a small amount of information from a certain offset in a
 file and not the entire file.

 When an "Offset" is specified in the "File Read" request the content of
 "Data" reflects the bytes starting at the file offset. A value of "0"
 indicates the beginning of the file.

 When the "Limit" parameter is specified, the read operation will return only
 that number of bytes or the balance of the file whichever is less.

 When either "Limit" or "Offset" are specified the "File Read Response" will
 contain a "NumRead" parameter indicating the actual number of bytes read. The
 "Size" parameter will always reflect the total file size. The following is an
 example of a the exchanges needed to read a file limiting the message size.
 Note that you might likely be able to transfer files as large as 128KB in a
 single message.

 TRANSMITTED RECEIVED

 {
 "Message":"File Read",
 "File":"/flash/www/config/folder.png"
 "Limit":256,
 }

 {
 "Message":"File Read Response",
 "File":"/flash/www/config/folder.png",
 "Size":329,
 "Offset":0,
 "Limit":256,
 "NumRead":256,
 "Encoding":"base64",
 "Data":"iVBORw0KGgoAAAANSUhEUgAAABAAAA...
 GUQBG+9eyXUtY0pRt27bXtsaWXGtYs...
 VANEN3vhsJvBA4DS7r5GwgK9bjkyDG...
 MxeRuNikAzjk6AWQvVxDk5KcFEN0Qj...
 ",
 "Status":"Succeed"
 }

 {
 "Message":"File Read",
 "File":"/flash/www/config/folder.png"
 "Offset":256,
 "Limit":256,
 }

 Page 218

 {
 "Message":"File Read Response",
 "File":"/flash/www/config/folder.png",
 "Size":329,
 "Offset":256,
 "Limit":256,
 "NumRead":73,
 "Encoding":"base64",
 "Data":"M0YfZOC0BOfVuGyAuFmENCMZki+FRW...
 ",
 "Status":"Succeed"
 }

FILE WRITE REQUEST
 The "File Write" operation is used to transfer a file to the JNIOR. The write
 request specifies the target "File" from the root of the file system. The
 "File" parameter must be present for the request to be considered valid.

 Since files may contain binary data the "Data" portion of the message is
 encoded with Base64 encoding. The "Encoding" parameter must be specified
 as precisely as "base64".

 The "Size" parameter is required and must define the intended size of the file
 in bytes. It must match the decoded Base64 "Data" content in length. The data
 is decoded and the byte count compared to that specified before attempting to
 write the file.

 You may optionally specify the last modification timestamp parameter "Mod" for
 the file. The timestamp is represented as a Linux time in milliseconds since
 midnight January 1st 1970 in Universal Coordinated Time (UTC). If present the
 last modification time for the resulting file will be as specified.

 Once the file is written the "File Write Response" is returned. The "File" and
 "Size" are reflected in the response (as would any "Meta"). The formatted
 timestamp is also returned in a "Mod" parameter. The "NumWritten" parameter
 reflects the result of the file write. This should match the specified "Size"
 value if the write is to be successful. A value less than zero indicates an
 error. A typical exchange follows.

 TRANSMITTED RECEIVED

 {
 "Message":"File Write",
 "File":"/temp/main.c",
 "Size":144,
 "Mod":1310414726000,
 "Encoding":"base64",
 "Data":"DQojaW5jbHVkZSAiaW80MzAuaCINCg0KaW50IG1haW4oIHZvaWQgKQ0Kew0KIC...
 bWVyIHRvIHByZXZlbnQgdGltZSBvdXQgcmVzZXQNCiAgV0RUQ1RMID0gV0RUUF...
 dHVybiAwOw0KfQ0K"
 }

 {
 "Message":"File Write Response",
 "File":"/temp/main.c",

 Page 219

 "Size":144,
 "Mod":"11 Jul 2011 16:05",
 "NumWritten":144,
 "Status":"Succeed"
 }

WRITING LARGE FILES
 For very large files the "File Write" message can become huge. This can lead
 to memory and performance concerns. Fortunately, you can optionally use the
 boolean parameter "Append" to break file writes into manageable blocks.

 To append to an existing file you use the "File Write" message exactly as
 described above. You must include an additional parameter named "Append" set
 to the value of "true". In this case the file must previously exist and the
 data included with the "Data" parameter will be appended to it. The write
 operation will fail if the file is not present. So to transfer a large file
 using multiple messages the first must not indicate "Append". It would be
 included only in subsequent "File Write" messages. This will insure that the
 resulting file will be as you are expecting.

 In this case the returned "Size" parameter will increase as the size of the
 target file increases by the "NumWritten" byte count.

FILE REMOVE REQUEST
 One or more files or folders can be removed/deleted using the "File Remove"
 request. The "Files" parameter is an array of file/folder names. You do not
 use a trailing '/' when specifying a folder in this request. The JNIOR will
 attempt to remove each file/folder specified in the array.

 Each individual deletion may or may not succeed. The "File Remove Response"
 will enumerate the successful deletions in a "Succeed" array. Similarly any
 failures will be listed in a "Fail" array. Depending on the results the
 response message may contain either a "Succeed" array or a "Fail" array or
 both. Between the two arrays the results of each attempt for those items
 listed in the original "Files" array will be reported. For example:

 TRANSMITTED RECEIVED

 {
 "Message":"File Remove",
 "Files":[
 "/flash/image.txt",
 "/flash/main.c"
]
 }

 {
 "Message":"File Remove Response",
 "Succeed":[
 "/flash/image.txt",
 "/flash/main.c"
]
 }

 Page 220

 Here we attempt to remove a folder and the request fails. In this case we
 expect that it would fail both because the folder contains files and
 sub-folders (it is not empty) and also because it is a special system folder.
 You cannot remove the /etc, /flash, or /temp folders. You also cannot remove
 any content from the /etc folder.

 TRANSMITTED RECEIVED

 {
 "Message":"File Remove",
 "Files":[
 "/flash"
]
 }

 {
 "Message":"File Remove Response",
 "Fail":[
 "/flash"
]
 }

FILE RENAME REQUEST
 You may rename a file or folder using the "File Rename" request. In this case
 you specify the file/folder with the "old" parameter and the new file/folder
 name with the "New" parameter. The files must be specified from the root of
 the file system and both specifications must be in the same folder. You cannot
 "move" a file through a rename operation. A file/folder matching the "New"
 specification cannot already exist.

 The "File Rename Response" reiterates the request and adds a "Result" parameter.
 The "Result" will be either "Succeed" or "Fail" reflecting the result of the
 rename operation. An example follows.

 TRANSMITTED RECEIVED

 {
 "Message":"File Rename",
 "Old":"/flash/main.c",
 "New":"/flash/test-prog.c"
 }

 {
 "Message":"File Rename Response",
 "Old":"/flash/main.c",
 "New":"/flash/test-prog.c",
 "Result":"Succeed"
 }

 Page 221

FILE MKDIR REQUEST
 The ability to create a folder completes the set of file system functions.
 Here you can create a new folder using the "File Mkdir" message. The new
 folder is specified from the root of the file system by the "Folder" parameter.

 The "File Mkdir Response" reiterates the "Folder" and adds a "Result" which
 will be either "Succeed" or "Fail" depending on the outcome of the creation
 attempt.

 TRANSMITTED RECEIVED

 {
 "Message":"File Mkdir",
 "Folder":"/flash/testing"
 }

 {
 "Message":"File Mkdir Response",
 "Folder":"/flash/testing",
 "Result":"Succeed"
 }

 Page 222

JMP Protocol

REGISTRY COMMANDS
 The JNIOR is configured by various parameter settings which are stored in the
 non-volatile Registry. In addition to configuration there are special keys
 (that start with the dollar sign '$') which record and report dynamic
 information. The input and output Usage Meter status is reported through a
 system Registry key named $HourMeter for example. The Registry then plays an
 important role in monitoring the status of a JNIOR.

REGISTRY UPDATE NOTIFICATION
 The "Registry Update" message is an unsolicited message. It is transmitted
 through the JMP Server whenever there is a change in the Registry. This
 notifies the client when new keys are created and when they are removed
 (content is empty/null). It notifies the client whenever the content of a
 key is changed. This allows the client to respond to the changing configuration
 of a connected unit as well as to receive information stored in dynamic system
 keys. The following is a very typical update for a channel's usage meter.

 {
 "Message":"Registry Update",
 "Keys":{
 "IO/Inputs/din1/$HourMeter":"43.68"
 }
 }

 Note that the "Keys" member passes an object which may contain 0 or more
 name/value pairs where the name is the Registry Key and the value its content.
 Here the $HourMeter reports 43.68 hours of usage. These update every 100th
 of an hour. That is the resolution of the Usage Meter. In general, Registry
 Updates will report only one key per message since changes occur in sequence
 and each change generates an update message through the inter-process messaging
 system. The Web Server picks up the internal message and broadcasts the
 information to all active JMP connections.

REGISTRY LIST REQUEST
 The Registry stores information that from time to time you may need to
 retrieve. This is easily done if you know precisely what Registry keys to read.
 A lot of work can be saved if you can determine easily what Registry keys have
 been defined and that have data available for reading. The "Registry List"
 command is used to obtain a listing similar to a file directory or folder
 listing for a node in the Registry.

 The "Registry List" command summons a "Registry List Response" message. A
 complete exchange is shown below. The Client sends the request and the server
 supplies the response message. Note how the "Meta" member might be used to pass
 information to the routine that eventually (and asynchronously) will receive
 the response.

 Page 223

 TRANSMITTED RECEIVED

 {
 "Message":"Registry List",
 "Meta":{"Op":"registry","Node":"/IO/Inputs/din1"},
 "Node":"/IO/Inputs/din1"
 }

 {
 "Message":"Registry List Response",
 "Meta":{"Op":"registry",
 "Node":"/IO/Inputs/din1"},
 "Keys":[
 "/IO/Inputs/din1/Enabled",
 "/IO/Inputs/din1/$HourMeter",
 "/IO/Inputs/din1/Conditioning",
 "/IO/Inputs/din1/LatchState",
 "/IO/Inputs/din1/Desc",
 "/IO/Inputs/din1/ClosedDesc",
 "/IO/Inputs/din1/OpenDesc",
 "/IO/Inputs/din1/Count/",
 "/IO/Inputs/din1/ShowCount",
 "/IO/Inputs/din1/ShowUsageMeter",
 "/IO/Inputs/din1/UsageState",
 "/IO/Inputs/din1/CountState",
 "/IO/Inputs/din1/ShowControls"
]
 }

 Here we note that a list (or array) of key names is returned in the "Keys"
 member. Note too that those that end in a forward slash '/' represent
 sub-nodes which will contain keys or additional nodes which can be retrieved
 with a subsequent request for that node. There are no empty sub-nodes
 (subdirectories or subfolders) in the JANOS Registry. Therefore if the node
 is listed it must have content within its structure somewhere.

 Page 224

REGISTRY READ REQUEST
 The "Registry Read" command request is used to retrieve the content of one or
 more Registry keys. The request includes the "Keys" member which provides an
 array of Registry keys for which we want the content. Note that the optional
 "Meta" member is available for use but not employed in this example. The
 request solicits a "Registry Response" message which returns the "Keys" member
 which list time returns an object whose members are name/value pairs reporting
 each key and its content.

 TRANSMITTED RECEIVED

 {
 "Message":"Registry Read",
 "Keys":[
 "/IO/Inputs/din1/Enabled",
 "/IO/Inputs/din1/$HourMeter",
 "/IO/Inputs/din1/Conditioning",
 "/IO/Inputs/din1/LatchState",
 "/IO/Inputs/din1/Desc",
 "/IO/Inputs/din1/ClosedDesc",
 "/IO/Inputs/din1/OpenDesc",
 "/IO/Inputs/din1/ShowCount",
 "/IO/Inputs/din1/ShowUsageMeter",
 "/IO/Inputs/din1/UsageState",
 "/IO/Inputs/din1/CountState",
 "/IO/Inputs/din1/ShowControls"
]
 }

 {
 "Message":"Registry Response",
 "Keys":{
 "/IO/Inputs/din1/Enabled":"true",
 "/IO/Inputs/din1/$HourMeter":"44.28",
 "/IO/Inputs/din1/Conditioning":"1",
 "/IO/Inputs/din1/LatchState":"1",
 "/IO/Inputs/din1/Desc":"Input 1",
 "/IO/Inputs/din1/ClosedDesc":"ON",
 "/IO/Inputs/din1/OpenDesc":"OFF",
 "/IO/Inputs/din1/ShowCount":"true",
 "/IO/Inputs/din1/ShowUsageMeter":"true",
 "/IO/Inputs/din1/UsageState":"0",
 "/IO/Inputs/din1/CountState":"0",
 "/IO/Inputs/din1/ShowControls":"true"
 }
 }

 Note that there is a name/value pair corresponding to each requested Registry
 key even if that key is undefined (does not exist). All of the keys requested
 here in this example have values. If a key is not present it will return the
 empty or null string value "".

 Page 225

REGISTRY WRITE REQUEST
 An external application may need to alter the configuration of a JNIOR. In
 order to do so it is necessary to create or change the content of a Registry
 key. The "Registry Write" command is used for this purpose. There is no
 restriction as to what can be written to the Registry. Specific keys have
 specific purposes and some are recognized internally by the JANOS operating
 system. Others pertain to the formatting of the dynamic pages. Still others
 may be specific to custom applications and programs running on the JNIOR.

 The "Keys" member of the "Registry Write" command message provides an object
 containing 1 or more name/value pairs. Each element represents a write request
 where the name is the Registry key and the value its intended content. Note
 that the JANOS Registry stores strings. Only strings can be written however
 they may encode practically anything. The "Registry Write" request solicits a
 "Registry Response" returning the keys successfully written.

 If there is an error in writing a key, the key will be returned either with
 an empty or null string ("") or the prior and still valid content. Here is
 an example changing the description displayed by the configuration pages for
 Digital Input 2. The write was successful.

 TRANSMITTED RECEIVED

 {
 "Message":"Registry Write",
 "Keys":{
 "IO/Inputs/din2/Desc":"Part Produced"
 }
 }

 {
 "Message":"Registry Response",
 "Keys":{
 "IO/Inputs/din2/Desc":"Part Produced"
 }
 }

 Not surprisingly this exchange is immediately followed by a "Registry Update"
 message. This signals to all who are listening that the key has been altered.

 {
 "Message":"Registry Update",
 "Keys":{
 "IO/Inputs/din2/Desc":"Part Produced"
 }
 }

 Page 226

REGISTRY WRITE ENCRYPTED
 The Registry may store user names and passwords for configured email accounts
 for example. The user's and administrator's account credentials defined in
 JANOS are stored very securely internal the processor chip itself. Passwords
 for other purposes are configured in the Registry and should not be stored
 in plain text. Note the result of the following "Registry Read" request.

 TRANSMITTED RECEIVED

 {
 "Message":"Registry Read",
 "Keys":[
 "/IpConfig/Password"
]
 }

 {
 "Message":"Registry Response",
 "Keys":{
 "/IpConfig/Password":"Qrq5CQ/rYBPfye..."
 }
 }

 This password for the default email account is not readable. This is not just
 obfuscated from view but securely encrypted by a secret key known only to the
 JANOS operating system and one that is unique to the unit. Nevertheless an
 external application (including the configuration pages) needs to be able to
 set a new password. This cannot be done without special handling as the
 encryption secret is not externally known and cannot be determined.

 To make this possible, the "Registry Write Encrypted" command is available.
 This is used to write new password credentials for the default email account
 and indeed any other such account where JANOS later requires access to the
 plain text password. JANOS needs to be able to decrypt the content. If an
 application wants to store data securely it can encrypt the data using its
 own procedures and write the encrypted result using the normal "Registry Write"
 command. Later the content can be read and decrypted. The special form of write
 command is used only for information that JANOS stores with its own secure
 encryption. Data that only JANOS can then decrypt and use.

 The "Registry Write Encrypted" command works exactly as does the "Registry
 Write" command. It also summons a "Registry Response" but one that shows
 only the encrypted password content. The password is provided in the request
 in combination with the username and in plain text. It is highly recommended
 that passwords not be configured through this protocol unless the connection
 used is secured by TLS/SSL. The procedure for setting a new password can be
 gleamed from the dynamic web pages supplied with the unit. The steps to handle
 it are in the Javascript. You can also contact INTEG Process Group, Inc. for
 assistance if you have trouble. Typically this password is set using the
 IPCONFIG command in the Console.

 Page 227

JMP Protocol

CONSOLE SESSIONS
 A Console Session provides access to the JANOS Command Line interpreter.
 Practically every operating system has a command line interpreter. Windows(R)
 has the DOS Command Prompt. JANOS is no different and in fact provides a
 command line interpreter that recognizes many different commands some of which
 are similar to commands available in either the DOS or Linux environments. The
 command line Console provides the tools needed for JNIOR configuration,
 diagnostics and application development.

 The Console can be accessed by 115,200 BAUD serial connection to the RS-232
 port directly on the JNIOR. If the unit is configured for operation on the
 network the Console can also be opened by making a Telnet connection to the
 unit. The command line interpreter functions identically using either approach.
 The RS-232 diagnostic port provides some additional information such as a boot
 dialog chronicling the boot sequence and error messages should critical
 assertions occur.

 The JMP Server also provides access to the command line interpreter. A JMP
 connection can open a Console Session. This is a separate command process
 under the control of the JMP Server on behalf of the JMP connection. The
 client can supply data simulating keystroke entry and consume characters
 output from the session perhaps for display. Only one session can be opened
 for each JMP connection although it may be closed and reopened any number of
 times while the JMP connection is active.

 The dynamic configuration pages supplied with the unit support a "Console" tab
 through which the use can interact with the Console Session in a fashion
 virtually identical to any Telnet client or serial terminal client application.
 You can review the Javascript for more insight.

 An application may use a Console session to accomplish some action only
 available through the command line interpreter. In such case the session my be
 opened, the command or commands executed, and then immediately closed.

CONSOLE OPEN REQUEST
 When a JMP connection is made there is no command session associated. If
 commands are to be fed to the command line interpreter or a console session
 supported it must be opened. The "Console Open" command is then required and
 this solicits a "Console Response" message whose "Status" member provides the
 status of the result. The outcome can be either "Established" or "Failed".
 Below a Console Session is started.

 TRANSMITTED RECEIVED

 {
 "Message":"Console Open"
 }

 {
 "Message":"Console Response",
 "Status":"Established"
 }

 Page 228

 Note that while a Console session is open all other JMP requests and
 unsolicited messaging are still valid and active. The console session can
 be supported in parallel with all other activity over the connection.

CONSOLE STDIN MESSAGE
 The "Console Stdin" message passes character data to the command line
 interpreter through its stdin serial stream. These characters function
 exactly as if they were typed at the keyboard in a Telnet session. You use
 "\r" as the ENTER keystroke. An UP-ARROW or DN-ARROW keystroke is replaced
 by its VT-100 escape sequence which the Series 3 and Series 4 JNIORs have
 come to expect. Characters entered through the Console tab in the dynamic
 configuration pages are each sent immediately as typed one at a time to the
 stdin stream. Note that the console session command line interpreter echoes
 character input just as it does everywhere else.

 {
 "Message":"Console Stdin",
 "Data":"dir\r"
 }

CONSOLE STDOUT MESSAGE
 With every stdin stream there is likely a stdout and the Console Session
 is no exception. The "Console Stdout" message is transmitted by the server and
 it supplies data available for display. This may be echoed characters or
 command output. It is delivered asynchronously and therefore may contain 1 or
 more characters. It may contain the entire output of a command or only part
 depending on JANOS activity levels. In other words this is a character stream
 and a single "Console Stdout" message may contain multiple lines of output or
 the output from multiple commands. The output from a single console command
 may be spread across multiple messages. Applications must be coded with this
 in mind. For example this is data from the Console session tab where the
 command was typed in and executed.

 TRANSMITTED RECEIVED

 {"Message":"Console Stdin","Data":"d"}
 {"Message":"Console Stdin","Data":"i"}
 {"Message":"Console Stdout","Data":"d"}
 {"Message":"Console Stdin","Data":"r"}
 {"Message":"Console Stdout","Data":"i"}
 {"Message":"Console Stdin","Data":"\r"}
 {"Message":"Console Stdout","Data":"r"}

 {
 "Message":"Console Stdout",
 "Data":"\r\netc\r\nflash\r\njniorboot.log\r\n
 jniorboot.log.bak\r\njniorsys.log\r\n
 jniorsys.log.bak\r\nmyfile.txt\r\nphp
 .log\r\ntemp\r\n\r\nBruce_Dev /> "
 }

 This would be the same command executed by an application. The results may not
 be consistent although the output of the command certainly should.

 Page 229

 TRANSMITTED RECEIVED

 {
 "Message":"Console Stdin",
 "Data":"dir\r"
 }

 {
 "Message":"Console Stdout",
 "Data":"dir\r\netc\r\nflash\r\njniorboot.log
 \r\njniorboot.log.bak\r\njniorsy"
 }

 {
 "Message":"Console Stdout",
 "Data":"s.log\r\njniorsys.log.bak\r\nmyfile.
 txt\r\nphp.log\r\ntemp\r\n\r\nBruce
 _Dev /> "
 }

 An application would likely buffer all data until the command line prompt is
 detected. Only then can it interpret the list of files supplied reliably.

CONSOLE CLOSE REQUEST
 A Console session will remain active until closed. It is automatically closed
 should the JMP connection terminate. It is good practice however to close the
 command session if there is no immediate need for it. This keeps the load on
 JANOS to a minimum and keeps the process slot open for other activities. The
 "Console Close" command solicits a "Console Response" message whose "Status"
 member indicates "Closed" in all cases.

 TRANSMITTED RECEIVED

 {
 "Message":"Console Close"
 }

 {
 "Message":"Console Response",
 "Status":"Closed"
 }

EXAMPLE CONSOLE SESSION
 Here is a example of opening a command session and logging in using the default
 credentials. The session is then closed once the prompt has been reached. Note
 how the entry of the password is not echoed. This is just as it is in any JNIOR
 Telnet session.

 TRANSMITTED RECEIVED

 {
 "Message":"Console Open"
 }

 Page 230

 {
 "Message":"Console Response",
 "Status":"Established"
 }

 {
 "Message":"Console Stdout",
 "Data":"\r\nWelcome to the JNIOR Model 410...
 Copyright (c) 2012-2015 INTEG Process ...
 Local time: Wed Oct 07 13:45:38 EDT 20...
 Bruce_Dev login: "
 }

 {
 "Message":"Console Stdin",
 "Data":"jnior\r"
 }

 {
 "Message":"Console Stdout",
 "Data":"jnior\r\nBruce_Dev password: "
 }

 {
 "Message":"Console Stdin",
 "Data":"jnior\r"
 }

 {
 "Message":"Console Stdout",
 "Data":"*****\r\n\r\nBruce_Dev /> "
 }

 {
 "Message":"Console Close"
 }

 {
 "Message":"Console Response",
 "Status":"Closed"
 }

 While access to the Console offers a great amount of flexibility for any
 application it should not be abused.

 Page 231

JMP Protocol

EXTERNAL DEVICES
 There are a number of external modules that can be used with JNIOR. These
 attach to the Sensor Port and can be daisy-chained. The most popular of these
 is the Power 4ROUT modules adding an additional 4 relay outputs to the JNIOR
 I/O set. Up to two 4ROUT modules can be used which will logically extend the
 number of relay outputs reported in the "Monitor" message. But additional
 4ROUT and other modules can be used limited only by the power load on the
 sensor port/network. Modules are read and written using their ID string as
 an address.

 Each interaction with an external module involves the exchange of a Data Block.
 The data blocks will differ depending on whether a device is being read or
 written. These blocks define a structure of fields. The definitions for the
 device blocks are provided as part of the JNIOR Protocol Specification.

ENUMERATE DEVICES REQUEST
 Each external module has a unique ID. This is a 16 character hexadecimal
 string representing 8 bytes. The least significant byte or rightmost 2
 characters always specify the type of module. This would be 'FB' for a
 standard 4ROUT external module. The 5 bytes or 10 characters immediately
 preceding the type can be considered a Serial Number of sorts. Typically
 these are constrained to the digits 0 through 9. The first byte or 2
 characters is a check byte and the byte following a software code (typically
 but not always a '11').

 The "Enumerate Devices" command is used to retrieve a list of the active
 modules connected to the JNIOR. This solicits an "Enumerate Devices Response"
 which includes a "Devices" list of 0 or more module IDs. Note that the "Meta"
 member can be included in the request and will be returned unmodified in the
 response. This can be used to pass information to the routine that will
 process the response. For example we have this exchange.

 TRANSMITTED RECEIVED

 {
 "Message":"Enumerate Devices"
 }

 {
 "Message":"Enumerate Devices Response",
 "Devices":[
 "CD111090708109FB",
 "16111100125011FE"
]
 }

 This tells us that the JNIOR has two connected modules. One is type 0xFB
 which is a 4ROUT module. The other a type 0xFE which is the Analog 4-20 ma
 module. The device types are described in the JNIOR Protocol Specification
 document.

 Page 232

READ DEVICES REQUEST
 The "Read Devices" command is used to obtain the current data block from one
 or more devices. The format of the data block is specific to the device type.
 This solicits the "Read Devices Response" which includes only those devices
 successfully read and the data block content encoded in a "Hex" string. Here
 we read both of the devices reported in the previous enumeration.

 TRANSMITTED RECEIVED

 {
 "Message":"Read Devices",
 "Devices":[
 "CD111090708109FB",
 "16111100125011FE"
]
 }

 {
 "Message":"Read Devices Response",
 "Devices":[
 {
 "Address":"CD111090708109FB",
 "Hex":"0F000000000000000000"
 },
 {
 "Address":"16111100125011FE",
 "Hex":"000000000000000000000000"
 }
]
 }

 The content of these blocks can be interpreted using the formats defined in
 the JNIOR Protocol Specification document. From this response we can see that
 all of the relays on the 4ROUT device are open and not activated. The 4-20
 module is connected but since in this instance it is not wired to any current
 loop devices it reports all inputs at 4 ma (0x0000) and its two outputs are
 set to 4 ma (0x0000).

 Page 233

WRITE DEVICES REQUEST
 The "Write Devices" command is used to write to an external module. Here we
 pass a properly formatted data block to the 4ROUT module reported in the prior
 example. The goal is to close the 3rd relay (Relay Output C). This is achieved
 by setting the mask (first byte) to 0x04 informing the module that we will
 only be setting the state of the 3rd relay. We define the state (second byte)
 as 0x04 to close that relay. The command solicits the "Write Devices Response"
 which returns the result of each write attempt. The "Result" member will be
 'true' if the write is successful and 'false' otherwise.

 TRANSMITTED RECEIVED

 {
 "Message":"Write Devices",
 "Devices":[
 {
 "Address":"CD111090708109FB",
 "Hex":"04040000000000000000"
 }
]
 }

 {
 "Message":"Write Devices Response",
 "Devices":[
 {
 "Address":"CD111090708109FB",
 "Result":true
 }
]
 }

 Note that the relays in the 4ROUT module can be pulsed. Here we simply turned
 Relay C on. The value for its pulse duration being 0x0000 in the block.

EXPANSION MODULES
 The following module types are typically used with JNIOR. The type is
 represented in hexadecimal. This appears as the last two characters in a
 module's ID string.

 Type 10 -- Temperature Probe
 Type 26 -- Temperature Probe
 Type F9 -- 3-Channel LED Dimmer
 Type FA -- Rack Mounted User Panel
 Type FB -- 4ROUT Quad Relay Output Module
 Type FC -- RTD Temperature Module
 Type FD -- 10V Analog Module
 Type FE -- 4-20ma Analog Module

 READ DATA BLOCK

 The read and write data blocks appropriate for each module are defined in the
 JNIOR Protocol Specification. The data blocks for the 4ROUT Quad Relay Output
 module are represented here as an example of translation between the binary
 descriptions and that required for this protocol.

 Page 234

 4ROUT Read Data Block

 "Hex":"00000000000000000000"
 | | | | | |
 | | | | | 0000 Relay D Pulse Time Remaining
 | | | | | (0 to FFFF hexadecimal milliseconds)
 | | | | 0000 Relay C Pulse Time Remaining
 | | | | (0 to FFFF hexadecimal milliseconds)
 | | | 0000 Relay B Pulse Time Remaining
 | | | (0 to FFFF hexadecimal milliseconds)
 | | 0000 Relay A Pulse Time Remaining
 | | (0 to FFFF hexadecimal milliseconds)
 | 00 Bit mapped relay status (0-open 1-closed)
 00 Bit mapped last relay mask used (1-selected)

 Bit mappings (mask and status)
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 0 | 0 | 0 | Rly D | Rly C | Rly B | Rly A |
 +-------+-------+-------+-------+-------+-------+-------+-------+

 Of most importance here are the last 4 bits of the second byte. This is
 basically the 4th character of the "Hex" string encoding which relays are
 closed and which are open. '0' indicating that all of OFF. 'F' indicating
 all are ON.

 WRITE DATA BLOCK

 4ROUT Write Data Block

 "Hex":"00000000000000000000"
 | | | | | |
 | | | | | 0000 Relay D Pulse Time
 | | | | | (0 to FFFF hexadecimal milliseconds)
 | | | | 0000 Relay C Pulse Time
 | | | | (0 to FFFF hexadecimal milliseconds)
 | | | 0000 Relay B Pulse Time
 | | | (0 to FFFF hexadecimal milliseconds)
 | | 0000 Relay A Pulse Time (0 to FFFF hexadecimal milliseconds)
 | 00 Bit mapped relay state (0-open 1-closed)
 00 Bit mapped relay selection mask (1-selected)

 Bit mappings (mask and state)
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | 0 | 0 | 0 | 0 | Rly D | Rly C | Rly B | Rly A |
 +-------+-------+-------+-------+-------+-------+-------+-------+

 The state of the relays corresponding to the '1' bits in the 'mask' are changed
 to the desired 'state'. For a permanent/static change the corresponding Pulse
 Time must be 0000. To pulse Relay A ON for 5 seconds the Pulse Time field
 would be set to 5000 milliseconds which is represented as 1388 hexadecimal.
 The "Hex" string for this command would be "01010000000000001388". Note that
 the mask indicates the target relay. The state indicates the desired change
 and the length of the pulse in milliseconds is defined.

 Page 235

JMP Protocol

REALTIME CLOCK
 Access to the JNIOR's realtime clock is provided. This can be used to obtain
 and display the clock as it is maintained by the JNIOR. This exchange can be
 useful as a tick allowing you to detect the loss of connection.

 TRANSMITTED RECEIVED

 {
 "Message":"Clock Read"
 }

 {
 "Message":"Clock Response",
 "Time":1452012668787,
 "Date":"Tue, 05 Jan 2016 16:51:08 GMT"
 }

 An Administrator may adjust the JNIOR's realtime clock. There is no response.

 {
 "Message":"Clock Set"
 "Time":1452012668787
 }

JMP Protocol

REBOOT NOTIFICATION
 This message is sent when the JNIOR is shutting down for a reboot.

 {
 "Message":"Device Shutdown"
 }

 Page 236

JMP Protocol

SYSTEM LOGGING
 JANOS logs system events to the jniorsys.log file. When this file reaches a
 certain size it is aged to the jniorsys.log.bak file. The content of the
 latter is discarded. As a result there can be as much as 128KB of system logs.

 The "Syslog Read" request will return the log history in sequence from oldest
 to latest. This includes both the content of both files, as much as 128KB
 worth of log information.

 TRANSMITTED RECEIVED

 {
 "Message":"Syslog Read"
 }

 {
 "Message":"Syslog Read Response",
 "Data":[
 "10/10/16 10:28:16.645, -- JANOS 410 ...",
 "10/10/16 10:28:16.683, Registry expo...",
 "10/10/16 10:28:17.791, Added: WebSer...",
 .
 .
 .
 "10/20/16 12:55:26.582, -- JANOS 410 ...",
 "10/20/16 12:55:26.596, ** Warning: P...",
 "10/20/16 12:55:49.467, Requesting ti...",
 "10/20/16 12:55:55.000, Clock synchro...",
 "10/20/16 13:26:15.698, Starting sess...",
 "10/20/16 13:26:15.939, Successful lo...",
 "10/20/16 14:02:33.633, FTP/10.0.0.20...",
 "10/20/16 14:02:40.130, FTP/10.0.0.20..."
]
 }

 Note that the "Syslog Read Response" can be quite lengthy. Each line of the
 log is supplied in sequence in the "Data" string array.

 As new entries are posted to the jniorsys.log file the JMP Server will supply
 them. This is a real-time update and these messages are unsolicited. Note
 here the the "Data" is simply a string and not an array. These messages supply
 one line at a time.

 {
 "Message":"Syslog Update",
 "Data":"10/20/16 14:11:10.561, [logger] This is a new log entry"
 }

 Page 237

JMP Protocol

AUTH-DIGEST
 The JMP connection requires a login and will respond with a "401 Unauthorized"
 error text pending a successful login. The server provides a unique "Nonce"
 string as part of this message. This can be used in conjunction with the
 username and password to calculate the appropriate Authorization Digest.
 This requires a MD5 message digest calculation which generates a 16 byte
 digest represented as 32 hexadecimal characters. The calculation proceeds
 as follows:

 Digest = Username + ":" + MD5(Username + ":" + Nonce + ":" + Password)

 Where Username, Password, Nonce and Digest are all strings. The resulting
 Digest string is returned in the "Auth-Digest" member. Here is an example
 login with the default administrator's account.

 TRANSMITTED RECEIVED

 {
 "Message":""
 }

 {
 "Message":"Error",
 "Text":"401 Unauthorized",
 "Nonce":"bc581a9683d3e1857218db135e4b"
 }

 {
 "Auth-Digest":"jnior:6b7b418f223e7e0dc600c41c7b6644b3"
 }

 {
 "Message":"Authenticated",
 "Administrator":true,
 "Control":true
 }

NOTES
 The login requirement can be disabled. This creates a huge security
 vulnerability and is to be highly discouraged. Do not disable login
 requirements.

 Page 238

Programming Overview

OVERVIEW
 Anyone with basic programming skills can develop an Application Program to
 run on JNIOR. JANOS can in fact run several such applications simultaneously.
 A small additional program is sometimes needed to accomplish a particularly
 custom requirement. In order to provide this capability JANOS application
 programs utilize the Java language.

 Java is a high-level language and is typically the first language students
 encounter in an introduction to programming course. Java is a general purpose
 language that is designed to be for the most part independent of hardware
 configuration and operating system version. Application programs need not be
 recompiled when platform characteristics change. Programs once written for
 JNIOR, run on every Series 4 and later JNIOR with little or no maintenance.

SEE ALSO
 HELP Topics: JAVA, JVM

JVM Programming

DESCRIPTION
 Java programs are compiled into bytecode which is independent of the
 underlying computer architecture. The resulting compiled classes can run
 on any Java virtual machine (JVM). The JANOS JVM is a 'clean-room'
 implementation developed entirely from 'The Java(tm) Virtual Machine
 Specification' written by Tim Lindholm and Frank Yellin published by
 Addison Wesley Longman, Inc. Copyright (c) 1997 Sun Microsystems, Inc.

 Each application program is executed by its own instance of JVM. Each
 appears as a separate process. Each program may have any number of
 independently running threads. As JANOS can execute as many as 16 separate
 processes and understanding that several processes need be reserved for
 network and system activity, JANOS can reliably run several instances of
 the JVM getting the job done for you.

RUNTIME
 Java is a class-based, object-oriented programming language. The
 java.lang.Object is the root of the entire Java class hierarchy. Every
 class has Object as a superclass. The /etc/JanosClasses.jar file located
 on every JNIOR in read-only memory contains the necessary java.* class
 library as well as additional libraries as are necessary for programs to
 interface to JNIOR hardware and the rest of the world.

 To be successful, application programs developed for JNIOR must be built
 entirely on JanosClasses.jar and not with respect to any libraries that
 might otherwise be installed in combination with the IDE and compiler you
 use. The JanosClasses.jar file may be uploaded from the JNIOR and
 specified in the -bootclasspath option to the compiler. A program built
 in this way is guaranteed to have everything it needs to run reliably
 without Exception on any JNIOR.

 Page 239

 The JanosRuntime_2.0.jar runtime library file can separately be obtained
 from the INTEG website at jnior.com . This file contains the same
 class libraries that are available in JanosClasses.jar, additionally including
 Javadoc and source code detail to support development using an IDE. While
 either file will generate the same program the latter is invaluable in
 getting the most out of your IDE and JNIOR.

NOTES
 Programs access JNIOR hardware and other capabilities using a low-level
 native interface. A optimized call-by-name method is used permitting the
 operating system to be freely updated without creating a need to recompile
 application programs. Once a built-in method is located its location is
 cached and programs execute fast and efficiently.

SEE ALSO
 HELP Topics: COMPILING, PROGRAMMING, JanosClasses.jar

Program Files Programming

DESCRIPTION
 Application programs are written in the Java language. The application
 program and any other supporting *.java files are compiled into *.class
 files. The resulting class files which contain the bytecode are then packaged
 into a single library file with the .JAR extension.

 In addition to class files the JAR file contains a Manifest.mf file used
 by the JVM among other things to locate the main() program entry point. An
 AppInfo.ini file may be present. The presence of this file is detected by
 JANOS during boot an used to Register the application. Registered
 applications show up in the WebUI Configuration Applications tab.

 There may be other files added to the JAR file as needed by the application.
 Sometimes the developer will include the source files. This is the case
 with JBakup.jar for instance.

COMPILING
 For proper operation the application program MUST be compiled against the
 JanosClasses.jar runtime library or the expanded JanosRuntime_2.0.jar
 runtime (available from jnior.com). With Java being standard a
 simple "Hello World" program compiled with standard Java libraries will,
 in fact, execute properly on the JNIOR. With those libraries however, you
 will not be able to utilize the unique classes that provide access to all
 of JNIOR features and hardware.

 Depending on your choice of IDE or compiler the procedure will vary. With
 NetBeans (https://netbeans.apache.org//) when a Project is created you
 need to specify JanosRuntime_2.0.jar as a Library in the Project Properties
 dialog. With that JAR you can edit the library entry to indicate that it
 contains both Javadoc and Sources.

 Page 240

 Additionally in the Project Properties under Build and Compiling you must
 add a -bootclasspath option as an Additional Compiler Option. For
 example:

 -bootclasspath "C:\My Projects\JanosRuntime_2.0.jar"

 The above instructs the compiler to build on the JANOS runtime only.
 Adding the library to the project tells the IDE about classes unique to
 JNIOR.

 One last thing that will help the Netbeans IDE popup useful information as
 you develop your program is to edit one of the project.properties in the
 nbproject folder. You can make the following setting or otherwise point the
 endorsed.classpath to the JanosRuntime_2.0.jar file.

 endorsed.classpath=${javac.classpath}

 This setting insures that only JANOS pertinent information is displayed
 eliminating references to the standard libraries. If you do not make this
 change you might be led to use a class or method that is actually not
 supported on the JNIOR. With the -bootclasspath setting above the program
 will not successfully compile when it encounters the unknown.

NOTES
 The .JAR file extension identifies the library as containing an application
 that can be executed by JANOS using the JAVA command. JAR files located in
 the /flash folder are in the default search path for programs and can be
 executed by name on the command line without specifically using the JAVA
 command. This allows application programs to masquerade as custom commands.
 The FtpClient is an example where /flash/ftp.jar creates an FTP command
 for interaction with an external FTP server.

 A JAR file is identical in structure to a ZIP file. These can be manipulated
 with the ARC command (same as ZIP and JAR commands).

SEE ALSO
 HELP Topics: JVM, ARC, JAR, JanosClasses.jar, JAVA, JBakup, FtpClient

 Page 241

 Web Development

OVERVIEW
 JANOS supports a highly capable WebServer which can handle multiple
 connections from multiple clients simultaneously. Both non-secure (HTTP)
 and secure (HTTPS) connections are possible for pages served publicly and
 those requiring authentication.

 A Hypertext Preprocessor modeled after PHP is available providing the
 ability to create dynamic and fully-featured websites. This general purpose
 scripting language is also uniquely available for program and batch file use
 in the Command Line Console environment.

 Each WebServer connection can be dynamically upgraded to support the
 Websocket protocol providing full-duplex general-purpose communications with
 JNIOR. By default a Websocket connection supports the JANOS Management
 Protocol (JMP), a rich JSON based message exchange capable of all aspects
 of product administration. This includes file transfer, command line console
 access, Registry manipulation and I/O control and monitoring. In short, the
 entire product can be managed through a single HTTP/HTTPS connection.

 Inter-process communications are provided allowing an Application Program to
 be written as a network server. Custom protocols are then possible and
 proprietary protocols can be accommodated.

 Finally, uniquely the JANOS Webserver can serve an entire website directly
 from a single ZIP library file. This incredible feature allows the website
 to be installed and updated as a single file eliminating any risk that
 files may be missing or go out of sync. For example the entire default
 WebUI is contained within the /flash/www/config.zip file. This file need
 never be expanded.

NOTES
 The default WebUI demonstrates the power of the JANOS WebServer. These
 dynamic configuration pages leverage the power of the Websocket connection
 and the strength of the JMP protocol.

SEE ALSO
 HELP Topics: WebServer/Server, WEBSOCKET, JMP, WEBUI, ZIP

 Page 242

WebUI Web Development

DESCRIPTION
 By default the JANOS WebServer provides access to the Dynamic Configuration
 Pages User Interface (WebUI). This default website provides immediate access
 to JNIOR I/O, product configuration, command line console (CLI) services,
 file management and much more. The entire product can be managed through
 this one connection and a remote browser.

OPERATION
 When a browser accesses the JNIOR IP address the WebServer looks to the
 default root location /flash/www for a Home Page named index.html or
 index.php . The WebServer also looks in /flash/public where pages not
 subject to authentication can be placed. No home page will be found in these
 locations on a factory fresh JNIOR.

 When a home page is not found in the normal root locations the WebServer
 refers to the /WebServer/Path Registry key for additional paths to search.
 The default value of that key is /flash/www/config . The WebServer then
 looks in that folder for a home page. This would be the same location that
 a URL would reach had it included the /config sub-folder after the units
 IP address or domain name.

 On a factory fresh unit the /flash/www/config folder is not present. Here
 a unique feature of the JANOS WebServer comes into play. The ZIP library
 named /flash/www/config.zip in fact is present on a new JNIOR. This file
 actually creates a virtual folder providing content at the /flash/www/config
 location. A home page providing the JANOS WebUI will be located in this file
 along with all of the other files necessary to support this default website.

NOTES
 A custom website can be designed and served by the JNIOR. These new pages
 can be located in the /flash/www default WebServer root folder. This will
 then be found by the browser overriding the default configuration. Access
 to the default WebUI will remain possible simply by including the /config
 folder in the URL when accessing the JNIOR.

 A /flash/www.zip file can also house a custom website. The Webserver in
 checking the defualt /flash/www root folder will find the desired home
 page from the virtual folder created by /flash/www.zip . If a file is found
 in an actual folder the WebServer stops the search. This file then would
 override any file by the same name present in a corresponding virtual folder.

SEE ALSO
 HELP Topics: /Webserver/Path, WEBSERVER

 Page 243

Overview Scripting

OVERVIEW
 The JANOS WebServer utilizes a Hypertext Preprocessor modeled after the
 popular PHP general-purpose scripting language. This is not an official
 version of PHP and so it is referred to as a PHP-like scripting language.

 Web developers familiar with PHP will find working with scripting on JANOS
 to be very similar. JANOS scripting is a stable environment benefiting from
 a commitment to backwards compatibility. JANOS scripting can offer
 functionality tuned for use with JNIOR products.

 JANOS scripting implements a subset of the PHP Hypertext Pre-Processor. This
 allows segments of script to be interposed into HTML web content and used by
 the server to generate context specific web content on the fly and on demand.
 This may be used simply to label a page uniquely based on unit configuration.
 Or, a page may consist entirely of script and respond to parameters supplied
 in the URL to provide support for AJAX type requests and dynamic HTML.

 Uniquely JANOS scripting extends beyond the WebServer where it is used to
 render HTML. Scripting can be included as part of a command line batch file.
 In the batch environment scripts can conditionally render commands generating
 a batch file as appropriate for the current state of JNIOR. This proves
 to be very powerful and avoids having a separate and yet different scripting
 environment for batch.

 Scripts can also be written to be executed as a program. While batch files
 use the .BAT extension, scripted programs use the .PRG file extension and
 can be executed using the RUN command. Of course in this case the script
 simply renders general output. A little less useful but invaluable in testing,
 script snippets can also be directly entered at the command line.

 JANOS scripting is compiled. This is critical in attaining performance both
 in rendering websites and executing command line programs.

SEE ALSO
 HELP Topics: SCRIPT, WEBSERVER, RUN, CKSUMS

 Page 244

Script Tags Scripting

DESCRIPTION
 Script is inserted using the <?php opening tag and ?> closing tag. A
 closing tag at the end of a file is not required thus avoiding the insertion
 of unnecessary trailing white space. The <php= opening shortcut can be used
 with the following content assumed to be parameters to an ECHO statement.

 With JANOS scripting the preference is to use the generic scripting tags <?
 and ?>. The "php" characters are optional in the opening tags. So to add lines
 of script you can just use <? or for the shorthand echo statement <?=.

WEBSERVER
 The JANOS Web Server interprets PHP script in files with the .PHP extension.
 The index.php file is a default home page which if it exists takes precedence
 over and index.html file. The PHP file is assumed to contain HTML content
 which would be served like any other page with the exception of any script
 which is identified by the special tags. A .PHP file when served first
 executes script (if any) generating a .HTML file which subsequently is
 served to the client browser. Scripts then are designed to render HTML.

BATCH PROCESSING
 From the JANOS Command Line you can execute Batch Files which have the
 .BAT extension. Script may be interposed in these files for pre-processing.
 The syntax is identical to that used in the HTML implementation including
 the <? and ?> tags. The script renders commands formatted as if entered
 at the command line which are then executed. You can use script to
 conditionally customize and/or generate the commands.

SCRIPTED PROGRAMS
 The scripting implementation is very powerful. While such scripting is usually
 implemented by an interpreter, JANOS compiles these scripts prior to execution
 and caches the compiled code for reuse. As a result scripts execute fast and
 efficiently. This can be used to create utility and even application programs.
 A Program File can be created with the default extension .PRG and executed
 directly using the RUN command. These program files are logically created
 just as PHP HTML pages or scripted batch files. One or more blocks of script
 are interposed using the <? and ?> tags. In this case, text outside of
 the script is merely echoed as program output.

INLINE SCRIPT
 Script may be entered at the command line. The line must begin with the
 opening <? tag and be terminated with ?>. The script therein generates
 the command that then is executed. This can be useful in testing fragments
 of script.

 Inline script entered in this fashion must also simulate an ENTER keystroke
 by including a trailing newline character '\n'. Output without the newline
 is simply displayed and execution is not attempted. The puts($string)
 function echos the $string followed by the necessary carriage return and
 linefeed for execution. For example:

 bruce_dev /> <? puts("date");?>
 date
 Sun Jun 27 08:02:45 EDT 2021

 Page 245

 bruce_dev /> <? echo "date\n";?>
 date
 Sun Jun 27 08:03:02 EDT 2021

 bruce_dev /> <?="date\n";?>
 date
 Sun Jun 27 08:03:11 EDT 2021

 bruce_dev /> <?="date";?>
 date

 bruce_dev />

 Inline script can also simply generate output that would not be interpreted
 as a command. a Line of script may be entered following an exclamation
 point '!'. This syntax assumes the opening and closing tags. These should
 not then be entered. For example:

 bruce_dev /> ! puts("Hello World.");
 Hello World.

NOTES
 Errors in scripts are reported in the php.log file. Inline script errors
 are reported to the console.

 bruce_dev /> <? echo "Hello World." ?>
 Scripting error: /temp/tmp31076 (Line 1)
 1: <? echo "Hello World." ?>
 1: ^ expected semicolon

 bruce_dev />

SEE ALSO
 HELP Topics: VARIABLES, SCRIPTING, RUN

 Page 246

Variables Scripting

DESCRIPTION
 JANOS scripting is modeled after PHP and just as is PHP variable names always
 start with the dollar sign '$' character. By convention the next character in
 a name must be either the underscore '_' or an upper or lowercase letter in
 the set [a-zA-Z]. Varialbe names are case-sensitive. The name can be any
 length and the remaining characters may also be a digit [0-9].

TYPES
 Variables store information that is needed by the script. These information
 types are supported.

 * Booleans
 * Integers
 * Float Point Numbers
 * Strings
 * Arrays
 * NULL

 Script is loosely typed. You do not declare the variable type. That is
 defined by what you store in them. A variable can contain different types
 at different times. In fact you generally needn't worry about conversions
 either. Except for rare situations this is handled for you.

 Boolean variables store either True or False . These literal terms are
 case-insensitive. Boolean variables are great as flags to control script
 operation or to store the results of comparisons.

 Integers are in the range from -2,147,483,648 to +2,147,483,647 inclusive.
 An overflow can occur when a result exceeds the largest integer value at
 either end of the range.

 Floating point values are supported to 6 significant digits. The IEEE 754
 format is used. Care should be used with floating point as the limited
 precision can lead to rounding errors and the error can easily compound and
 accumulate.

 Strings can be of any length and can contain the values from 0x00 to 0xff
 inclusive. Binary data can be stored by String variables.

 Arrays are name-value pairs with the name being the array index and the
 value any variable type. Arrays may be multi-dimensional as the values can
 be arrays as well.

STRINGS
 String literals are defined using single quotation marks (') as follows:

 'This is a string literal'

 Escape sequences such as '\n' are not converted within literals. Everything
 between the single quotes including line breaks are part of the string.
 The only escape sequence recognized is that escaping a single quote itself.

 Page 247

 bruce_dev /> echo 'Bruce\'s test literal';
 Bruce's test literal

 bruce_dev />

 A string enclosed in double-quotes (") is subject to further processing. In
 addition to the handling of special characters using escape sequences any
 included variable names are expanded into a string representation of the
 value. This is a very powerful formatting tool.

 Strings may be concatenated using the period '.' operator.

 bruce_dev /> !="TEST"."ING";
 TESTING

 bruce_dev />

ARRAYS
 Arrays are created using the array() function. These can be fully defined
 using the following construct. This takes any number of key => value pairs
 as arguments.

 array(
 key => value,
 key2 => value2,
 key3 => value3,
 ...
)

BUILT-IN VARIABLES
 JANOS provides a small set of built-in variables.

 $_GET[]
 This array provides access to parameters supplied in the GET request URL.
 For example $_GET['name'] returns "INTEG" if ?name=INTEG is supplied in
 the URL. This would return NULL if it is not present. If a parameter
 appears in the URL without a value defined it is set to an empty
 string ("").

 When used from the Command Line the $_GET array enumerates the command
 line parameters following the command (either the batch file name or
 RUN command).

 $_POST[]
 This array provides access to parameters supplied as data in a POST
 request. HTML forms data may be submitted by either GET or POST methods.
 In the case of the latter the $_POST array provides access.

 $_SERVER[]
 This array provides access to parameters supplied by the Web Server. This
 includes the HTTP-Request headers.

 array $_SERVER {
 'HTTP_GET' => string ('/test.php HTTP/1.1'),
 'HTTP_HOST' => string ('bruce_dev'),

 Page 248

 'HTTP_CONNECTION' => string ('keep-alive'),
 'HTTP_UPGRADE_INSECURE_REQUESTS' => string ('1'),
 'HTTP_USER_AGENT' => string ('Mozilla/5.0 (Windows NT 6.1; ...
 'HTTP_ACCEPT' => string ('text/html,application/xhtml xml, ...
 'HTTP_ACCEPT_ENCODING' => string ('gzip, deflate, sdch'),
 'HTTP_ACCEPT_LANGUAGE' => string ('en-US,en;q=0.8'),
 'HTTP_COOKIE' => string ('JANOS-Session-Id=6fe5fd609c4abb7f ...
 'REQUEST_URL' => string ('/test.php'),
 'SERVER_ROOT' => string ('/flash/public'),
 'REQUEST_LOC' => string ('/'),
 'DOC_SPEC' => string ('/flash/public/test.php'),
 'DOC_NAME' => string ('test.php'),
 'FILE_SPEC' => string ('/flash/public/test.php'),
 'REMOTE_ADDR' => string ('10.0.0.20'),
 'REMOTE_PORT' => string ('11099'),
 'TLS_SECURED' => string ('FALSE')
 }

NOTES
 You can escape a dollar sign '$' in a double-quoted string if necessary to
 avoid a variable expansion. This would be required to output currency
 amounts.

 While double-quoted strings can include variables in formatting the output
 string, The JANOS script engine also supports the printf() function
 providing access to C Language string formatting. This offers a much greater
 level of control over numeric formats for example.

SEE ALSO
 HELP Topics: STATEMENTS, SCRIPT

 Page 249

Script Statements Scripting

DESCRIPTION
 JANOS scripting supports most of the standard control structures. The syntax
 are consistent with Standard C Language and PHP. Note that multiple statements
 may be grouped into a single statement using curly braces { }. All forms of
 commenting are available.

 // Whitespace is ignored allowing you to format your code as you are
 // accustomed to doing.
 if (expr)
 statement;

 /* Statements are terminated with a semicolon ';' just like in the C
 ** Language. In all of these constructs an individual statement may be
 ** replaced with a group of statements enclosed in curly braces '{}'.
 ** Format it according to your own standards.
 */
 if (expr) {
 statement;
 statement;
 statement;
 }

 // In addition to the one-line C++ style comments the one line
 // shell-style comment which starts with '#' can be used.
 if (expr)
 statement; # executed when expr is TRUE
 else
 statement;

 # The elseif construct is supported
 if (expr)
 statement;
 elseif (expr)
 statement
 else
 statement; /* default condition */

 // switch-case statements
 switch (expr) {
 case expr1:
 statement;
 statement;
 break;
 case expr2:
 statement;
 statement;
 break;
 default:
 statement;
 statement;
 break;
 }

 Page 250

 while (expr)
 statement;

 // while-loops support single-level 'break' and 'continue'.
 while {
 if (expr)
 break; // exit the loop early
 statement;
 }

 // The do-while form is available.
 do {
 statement(s)
 } while (expr);

 /* The for-loop follows the C Language implementation. */
 for (expr1; expr2; expr3)
 statement;

 /* The foreach construct provides an easy way to iterate over arrays. */
 foreach (array_expression as $value)
 statement;
 foreach (array_expression as $key => $value)
 statement;

 /* 'echo' is a native constructs but 'print' is a function. The former
 ** therefore does not require parentheses although if you like them
 ** feel free to include them.
 */
 echo expr;
 echo expr1, expr2, ... ;
 echo(expr1, ...);

 /* 'exit' (and its alias 'die') are also native constructs and not
 ** functions. They therefore do not require parentheses either. With
 ** these constructs once the expressions have been echoed the rendering
 ** process terminates.
 */
 exit;
 exit expr;
 exit expr1, expr2, ... ;
 exit (expr1, ...);

 die;
 die expr;
 die expr1, expr2, ... ;
 die (expr1, ...);

SEE ALSO
 HELP Topics: VARIABLES, SCRIPT

 Page 251

Functions Scripting

DESCRIPTION
 Functions are sections of code that perform a specific task. A function
 contains program statements that while written only once can be invoked
 multiple times, as many as is needed. The function takes parameters which
 are the variables upon which the task is performed. Very importantly the
 function returns a value as a result.

 A Function always returns a value even if none is required. In that case
 a value of NULL would be returned. Typically a function will return the
 result of a calculation or other operation.

 The CKSUMS scripting example utilizes a function whose purpose is to
 format and output a text string as an ECHO command for proper batch operation.
 This function does not return anything of use. It is just used to repeat
 an output operation in a defined manner. This is a custom function.

USER-DEFINED FUNCTIONS
 Any number of functions may be defined in developing script. Each function
 may have zero or more parameters and may optionally return a result. A
 function need not be defined in a script before it is invoked.

 Function functionName($param1, $param2, ...) {

 ... program statements ...

 return $result;
 }

 Function names consist of one or more characters from the set [_a-zA-Z0-9]
 where the first character cannot be a digit [0-9]. This is similar to the
 restriction on variable names.

ARGUMENTS
 Functions may be defined with any number of arguments or none at all. A call
 to the function provides values for the parameters. The call may supply fewer
 parameters than provided in the function definition in which case the
 additional defined parameters will receive a NULL value or may be defaulted
 in the function definition as follows. If too many arguments are supplied
 the additional will be ignored.

 function foo($arg, $str = 'default')
 {
 // function body
 return $ret;
 }

RETURNED VALUES
 A function may return a value using a return statement as shown in the
 examples above. If the function completes without executing a return
 statement a NULL value is returned. Any number of return statements may
 appear anywhere in the function body.

 Page 252

VARIABLE SCOPE
 Each function has its own local variable scope. Variables defined in a
 function are available only in that function. A variable may be defined
 with the same name as a global variable (those available to the main program)
 and not affect or otherwise corrupt the global value. Global variables are
 not accessible by default within a function.

GLOBAL VARIABLE REFERENCES

 Global variables are those defined in the top-level program. They can be
 accessed from a function using the global statement.

 global $gvar1, $gvar2, [..., $gvarN];

 The global statement creates a alias for the global variable in the local
 scope. Subsequent references to the variable retrieve the global variable
 value and the global variable may be modified. For example:

 $a = 1;
 $b = 2;

 function Sum()
 {
 global $a, $b;

 $b = $a + $b;
 }

 Sum();
 echo $b;

 The above when executed will output the value 3.

RECURSION
 Functions may call other functions and may be used recursively. Functions
 may define other functions and may redefine themselves.

NOTES
 If you need to conditionally define a function then it must be defined before
 it is referenced. This would assure that the proper form of the function is
 used. Otherwise results may not be as expected.

SEE ALSO
 HELP Topics: CKSUMS, VARIABLES, SCRIPT

 Page 253

Built-In Functions Scripting

DESCRIPTION
 Functions perform operations on a set of parameters and potentially return a
 result. A function is usually created when the task it performs will be
 required at various different points during a script. It is a write-once
 use-often kind of a programming feature.

 Some functions perform a task so common that they are needed in script after
 script. These are the kind of functions where it is useful to maintain in a
 library. JANOS scripting does support the include statement which permits
 you to create a PHP file with such functions and to simply include that file
 with each script.

 To support many of the very common functions JANOS scripting provides a
 Buit-In Function library. As scripting has been modelled after public PHP
 many of the common PHP functions can be found in the JANOS library as well
 as some that are very custom. These built-in functions eliminate the need to
 maintain a separate library of useful functions. These are also implemented
 at a native level and therfore operate much more efficiently that with
 compile bytecode.

 The Built-In Library supplies functions support a number of programming
 categories from string and array operations to system and Registry access.

RENDERING AND OUTPUT
 The following functions generate output. When the script is referenced by
 the WebServer this output becomes part of the HTML stream. When the script
 is used in the command line batch file the output is then interpreted as a
 command line entry. In program execution this is simply just output.

 int print (mixed $var)
 Outputs the $var as a string. It is the functional equivalent of the
 ECHO statement. This always returns 1.

 int puts (mixed $var)
 Outputs the $var as a string followed by the "\r\n" sequence. In addition
 to generating a newline for formatting general output this appends the
 ENTER termination needed for command execution in batch use. This always
 returns 1.

 string printf (string $format [, mixed $param])
 Outputs the formatted string defined by $format. This uses the Standard
 C Library format specifiers. A variable number of $param values may be
 supplied. The formatted string is also returned. The sprintf() function
 is available for formatting a string.

 void header(string hdrline)
 Adds the supplied $hdrline to HTTP response headers when rendering HTML
 through the WebServer.

 var_dump (var1 [, var2 [, ...]])
 Outputs a useful description of each variable. If var_dump() is issued
 without a parameter it will dump ALL of the local variables excluding
 the predefined arrays.

 Page 254

STRING OPERATIONS
 The following functions perform operations on string variables.

 string ltrim(string $str [, string $character_mask])
 Strip whitespace (or other characters) from the beginning of a string.

 string rtrim(string $str [, string $character_mask])
 Strip whitespace (or other characters) from the end of a string.

 string trim(string $str [, string $character_mask])
 Strip whitespace (or other characters) from both the beginning and end
 of a string.

 int strlen(string $string)
 Returns the length of the given string.

 string strtolower(string $str)
 Returns string with all alphabetic characters converted to lowercase.

 string strtoupper(string $str)
 Returns string with all alphabetic characters converted to uppercase.

 string ucfirst(string $str)
 Returns string with the first character of the first word converted
 to uppercase.

 string ucwords(string $str)
 Returns string with the first character of each word converted to
 uppercase.

 string strval (expr)
 Returns a string representation for the value of the expression or
 variable.

 string substr (string $str, int $start [, int $length])
 Returns a portion of the string specified by the start and length
 parameters.

 int strpos (string $haystack, string $needle [, int $start])
 Returns the position in $haystack of $needle if the string occurs at
 or after $start. Returns -1 otherwise.

 int stripos (string $haystack, string $needle [, int $start])
 Returns the position in $haystack of $needle if the string occurs at
 or after $start. Returns -1 otherwise. The comparison is case-independent.

 int strrpos (string $haystack, string $needle [, int $start])
 Returns the last position in $haystack of $needle if the string occurs
 at or after $start. Returns -1 otherwise.

 int strripos (string $haystack, string $needle [, int $start])
 Returns last the position in $haystack of $needle if the string occurs
 at or after $start. Returns -1 otherwise. The comparison is
 case-independent.

 Page 255

 bool startsWith(string $haystack, string $needle)
 Returns TRUE if $haystack starts with the string $needle.

 bool endsWith(string $haystack, string $needle)
 Returns TRUE if $haystack ends with the string $needle.

 int strcmp(string $str1, string $str2)
 Compares two strings in a binary safe manner. Returns 0 if both strings
 are equal. Returns a negative value (<0) if str1 less than str2 and a
 positive value (>0) if str1 is greater than str2.

 string bin2hex (mixed $var)
 Returns a String containing the hexadecimal representation of each
 character in $var. $var is converted to its string representation if
 not initially a String.

 string hex2bin (string $hex)
 Returns a string where the 2-byte hexadecimal representation of each
 character is supplied. Returns NULL is an the hexadecimal string
 contains an odd number of characters or any character not in the valid
 hexadecimal set [0-9a-fA-F].

 string sprintf (string $format [, mixed $param])
 Returns a formatted string as defined by $format. This uses the Standard
 C Library format specifiers. A variable number of $param values may be
 supplied.

 string crc (string $message)
 Returns a string of length 8 containing the hexadecimal CRC32 checksum
 calculated for the contents of $message.

 string md4 (string $message)
 Returns a string of length 32 containing the hexadecimal MD4 message
 digest calculated for the contents of $message.

 string md5 (string $message)
 Returns a string of length 32 containing the hexadecimal MD5 message
 digest calculated for the contents of $message.

 string sha1 (string $message)
 Returns a string of length 40 containing the hexadecimal SHA1 message
 digest calculated for the contents of $message.

 string sha2 (string $message)
 Returns a string of length 64 containing the hexadecimal SHA256 message
 digest calculated for the contents of $message.

ARRAY OPERATIONS
 There are a couple of functions supporting array variables specifically.

 int count(variable [, recursive])
 Returns the count of elements in an array or other variable. Includes
 recursive counts for multi-dimensional arrays if the recursive option
 is set to 1.

 Page 256

 array array_remove(array $arr, string $key)
 Returns a copy of the array $arr without an element with the
 specified $key.

DATA CONVERSION

 int intval (mixed $var)
 Returns an integer value for the variable. Returns null if a string
 cannot be interpreted as a number.

 double floatval (mixed $var)
 Alias for doubleval().

 double doubleval (mixed $var)
 Returns a double value for the variable. Returns null if a string
 cannot be interpreted as a number.

 mixed unpack (string $str, int $offset, int $length [, boolean $float])
 This function is used to extract data packed into the string (binary byte
 array) $str. Values are assumed to be packed in big-endian order beginning
 at the provided $offset. The size of the parameter is defined by $length.
 The optional boolean $float is FALSE by default and if set to TRUE
 indicates that data is stored in IEEE 754 floating point format.

 With $float set to FALSE this returns an INTEGER whose value is stored
 starting at $offset in $str for $length bytes. This will retrieve a byte
 value ($length = 1), a short value ($length = 2) or an int ($length = 4).
 64-bit values cannot be directly retrieved as there is no 64-bit PHP
 integer variable type. Values less than 4 bytes in length are unsigned.

 With $float set to TRUE this returns a DOUBLE whose value is stored in
 IEEE 754 format at $offset in $str for $length bytes. This retrieves a
 float value (length = 4) or a double value (length = 8).

 A NULL value is returned for any invalid combination of $length and
 $float. A NULL value is also returned for any attempted out of bounds
 string (array) reference.

 mixed endian (mixed $var)
 Reverses the endian order of a numeric value. This returns a variable of
 the same type and affects only numeric values.

 string urlencode (mixed $var)
 Encodes any non-alpha characters not in the set [-_a-zA-Z] using %##
 encoding. Plus symbols ('+') replace space characters.

 string urldecode (mixed $var)
 Decodes any %## encoding in the given string. Plus symbols '+' are
 decoded to a space character.

 string base64_decode(mixed $var)
 Decodes Base64 encoded string.

 string base64_encode(mixed $var)
 Encodes string in Base64.

 Page 257

DATE AND TIME

 int time (void)
 Returns the current time in seconds since midnight Jan, 1 1970 UTC.
 Same as getutc() .

 int getutc (void)
 Returns the current time in seconds since midnight Jan, 1 1970 UTC.
 Same as time() .

 string date (string $format, [int time])
 Returns a string formatted according to the given format using the
 specified timestamp or the current time if no timestamp is provided.
 If omitted the timestamp would be the value of time() . A partial set
 of PHP-like formatting specifiers are supported. Either UTC or Local
 Time may be represented depending on the occurrence of 'U' or 'L' in
 the format string. Local Time is the default. Daylight Saving Time (DST)
 is applied if appropriate for the local timezone.

 Day
 d Day of the month, 2 digits with leading zeros (01-31)
 D A textual representation of the day, 3 letters (Mon-Sun)
 j Day of the month without leading zeros (1-31)

 Month
 m Numeric representation of the month, with leading zeros (01-12)
 M A short textual representation of a month, 3letters (Jan-Dec)
 n Numeric representation of a month, without leading zeros (1-12)

 Year
 Y A full numeric representation of a year, 4 digits
 y A two digit representation of a year

 Time
 a Lowercase Ante meridiem or Post meridiem (am or pm)
 A Uppercase Ante meridiem or Post meridiem (AM or PM)
 g 12-hour format of an hour without leading zeros (1-12)
 G 24-hour format of an hour without leading zeros (0-23)
 h 12-hour format of an hour with leading zeros (01-12)
 H 24-hour format of an hour with leading zeros (00-23)
 i Minutes with leading zeros (00-59)
 s Seconds with leading zeros (00-59)

 Timezone
 U Represent Universal Coordinated Time (UTC)
 L Represent Local Time (default)
 e Timezone identifier, same as 'T' (EST or UTC)
 T Timezone abbreviation (EST or UTC)

 string gmtime ([int time])
 Formats a time value as a string. If the parameter is omitted the current
 time is formatted. The time value is in seconds since midnight
 Jan, 1 1970 UTC. The resulting string is formatted, for example, as:

 Page 258

 "Thu, 19 Nov 2015 13:13:12 EST".

 This is the same as:

 date("D, d M Y H:i:s T").

FILE OPERATIONS

 int filesize(string $filename)
 Returns the length of the file in bytes.

 int filemtime (string $filename)
 This function returns the timestamp when the content of the file was last
 changed. This is the number of seconds since midnight Jan 1, 1970 in UTC.

 bool file_exists(string $filename)
 Returns TRUE if the file/directory referenced by the supplied
 specification exists and FALSE otherwise.

 bool is_file(string $filename)
 Returns TRUE if the file referenced by the supplied specification exists
 and is not a folder.

 bool unlink(string $filename)
 Deletes the specified file. Returns TRUE if successful.

 int fopen(string $filename, string $flags)
 Opens a file for reading, writing, etc. The $flags parameter defines
 the mode of access following the Standard C Liobrary conventions. For
 reading a file would typically be opened using the flag string "rb".
 For writing the string "wb" would be appropriate.

 int fread(int $handle [, int $length])
 Returns a string containing up to $length bytes from the file. If
 $length is omitted the entire content of the file will be read.

 int fread(string $filename)
 Returns a string containing the entire content of the file defined by
 the supplied specification.

 int fwrite(int $handle, $string [, int $length])
 Writes the content of $string to the associated file. If specified, a
 maximum of $length bytes will be written. Returns the number of bytes
 written or FALSE on error.

 int fwrite(string $filename, $string)
 Creates the file defined by teh supplied specification containing
 the content of $string.

 bool feof(int $handle)
 Returns TRUE if the file has reached the end-of-file.

 int fclose(int $handle)
 Closes the file resource. It is good practice to close files that have
 been opened for reading or writing. There are only a limited number of

 Page 259

 available file handles.

 String getcwd()
 Returns the current working directory.

 bool chdir(string $directory)
 Change working directory. Returns FALSE if the new specification does
 not result in an existing folder.

 array scandir(string $directory)
 Return an array of files and folders from the referenced directory.

 bool is_dir(string $directory)
 Returns TRUE if the directory referenced by the supplied specification
 exists and is not a file.

 bool mkdir(string $directory)
 Creates the specified folder if it does not exist. Returns TRUE if
 successful.

 bool rmdir(string $directory)
 Removes the specified folder if it does not exist. Returns TRUE if
 successful.

 string file_crc (string $filename)
 Returns a string of length 8 containing the hexadecimal CRC32 checksum
 calculated for the contents of the file.

 string file_md4 (string $filename)
 Returns a string of length 32 containing the hexadecimal MD4 message
 digest calculated for the contents of the file.

 string file_md5 (string $filename)
 Returns a string of length 32 containing the hexadecimal MD5 message
 digest calculated for the contents of the file.

 string file_sha1 (string $filename)
 Returns a string of length 40 containing the hexadecimal SHA1 message
 digest calculated for the contents of the file.

 string file_sha2 (string $filename)
 Returns a string of length 64 containing the hexadecimal SHA256 message
 digest calculated for the contents of the file.

JSON SUPPORT
 Support for JSON (JavaScript Object Notation - json.org) is provided.
 JSON is used in many different ways. It is also a good means of preserving
 a PHP array structure in file storage and in thereby implementing a rudimentary
 database.

 array json_decode(string $json)
 Returns an array structure for the JSON object supplied in JSON string
 representation.

 Page 260

 string json_encode(array $json)
 Returns the JSON string representation of an array object.

 array json_load(string $filename)
 Returns an array structure representing the JSON object stored in the
 referenced file. The file contains the string representation of the
 JSON object.

 boolean json_save(string $filename, array $json)
 Stores an array structure representing a JSON object in the referenced
 file. The file will contain the string representation of the JSON object.
 Returns TRUE when the write is successful.

LANGUAGE SUPPORT
 There are functions provided that ascertain the status of a variable.

 bool is_null(mixed $var)
 Tests if a variable is NULL. Returns True or False .

 bool is_bool(mixed $var)
 Tests if a variable is Boolean. Returns True or False .

 bool is_int (mixed $var)
 Tests if a variable is an Integer. Returns True or False .

 bool is_double (mixed $var)
 Tests if a variable is a Double. We store all floating point values
 as Double. Returns True or False .

 bool is_string (mixed $var)
 Tests if a variable is a string. Returns True or False .

 bool is_array (mixed $var)
 Tests if a variable is an array. Returns True or False .

 bool isset (mixed $var)
 Returns TRUE is the variable has been assigned a value.

 bool empty (mixed $var)
 Determine whether a variable is considered to be empty. A variable is
 considered empty if it does not exist or if its value equals FALSE. This
 is equivalent to:

isset($var) || $var == false.

REGISTRY ACCESS
 The Registry stores name-value data typically for configuration. A script
 may need access to defined settings or be able to preserve settings of its
 own. These function access the JANOS Registry system.

 string getRegistryString(string $key [, string $default])
 Gets the content of the supplied Registry key. Note that this returns an
 empty string if the key has not been defined. Note also that an empty
 string is considered to be a FALSE boolean so the returned string can be
 used in a conditional statement.

 Page 261

 bool getRegistryBoolean(string $key [, boolean $dflt])
 Returns the boolean equivalent of the Registry key value.

 bool setRegistryString(string $key, string $value)
 Sets the content of the supplied Registry key. The key is deleted if
 the supplied value is an empty string.

 string[] getRegistryList(string $node [, $children = False])
 Returns and array of fully qualified keys for entries (children = False)
 or child nodes (children = True) within the specified node.

SYSTEM FUNCTIONS

 void syslog (string $message)
 Enters the message in the system log jniorsys.log file.

 void flush (void)
 Flushes buffers and attempts to send any output generated to the browser
 or console.

 void sleep (int $milliseconds)
 Flushes buffers and sleeps the process for the defined number of milli-
 seconds. If a script must wait for an external event it is important to
 allow the processor to perform other tasks.

 void yield (void)
 Yields the process. This should be used by extremely lengthy procedures
 to reduce the load on the processor and avoid watchdog timeouts.

REGULAR EXPRESSIONS
 Regular Expressions (REGEX) define string search patterns. JANOS scripting
 can utilize these.

 int ereg (string $pattern, string $substring [, array $regs])
 Returns the position in $substring of a match with $pattern. Returns
 FALSE otherwise. If $regs is supplied on a match it is set as an array
 whose first element is the matched string.

 int eregi (string $pattern, string $substring [, array $regs])
 Returns the position in $substring of a match with $pattern. Returns
 FALSE otherwise. If $regs is supplied on a match it is set as an array
 whose first element is the matched string. Case-independent comparisons
 are performed.

 array split(string $pattern, string $substring [, int $limit])
 Returns an array of string tokens from $substring using matches to
 $pattern as the separators. If $limit is provided the returned array
 will be limited to that number of entries where the last entry will
 contain the balance of the original string.

 array spliti (string $pattern, string $substring [, int $limit])
 Returns an array of string tokens from $substring using matches to
 $pattern as the separators. If $limit is provided the returned array
 will be limited to that number of entries where the last entry will
 contain the balance of the original string. Comparisons are

 Page 262

 case-independent.

 string ereg_replace (string $pattern, string $replacement, string $substring)
 Replaces all matches to $pattern in $substring with the string
 $replacement. Returns FALSE on error. Returns the original string
 if no matches are found.

 string eregi_replace (string $pattern, string $replacement, string $substring)
 Replaces all matches to $pattern in $substring with the string
 $replacement. Returns FALSE on error. Returns the original string
 if no matches are found. Comparisons are case-independent.

Include Statement Scripting

DESCRIPTION
 The include statement inserts and processes the specified file.

 include $filename;

 The $filename argument must evaluate to a string and specify a valid
 existing file. An absolute file specification (beginning with '/') may be
 used to retrieve files from anywhere in the JANOS file system. If only a
 file name is specified or a relative path is used the system searches for
 the file relative to the root of the website (typically /flash/www) using
 the same procedures used to retrieve standard web pages.

 File contents are included in HTML Mode. If the file has a file extension
 other than .PHP the file is included in the output stream without
 interpretation. If the file extension is .PHP then PHP content in the
 file will be interpreted and processed in normal PHP Mode as appropriate.

 Files may be included at any point in PHP code where a valid PHP statement
 is accepted. Files may be conditionally included. You may include a file
 any number of times. The content is cached. An included file may include
 other files.

 An error encountered during the interpretation of an included file will be
 reported with the line number and file name of the included file.

SEE ALSO
 HELP Topics: SCRIPT

 Page 263

Error Handling Scripting

DESCRIPTION
 The JANOS PHP implementation compiles script to bytecode. After a reboot any
 PHP source file will be compiled when referenced. The compiled bytecode will
 be executed to render the page. The compiled code will be retained until the
 source file or any included files are modified or until the JNIOR is rebooted.
 Subsequent page references use only the cached compiled code. The bytecode
 contained therein executes much more efficiently. Pages render faster and
 more reliably.

 Errors during the compilation phase are reported in three places. When an
 error is encountered an error page is rendered and displayed in the browser.
 This will define the error, display the faulty source line, and indicate
 the error with a pointer. The same information is appended to the php.log
 file in the file system root. An error message is also appended to the
 system log jniorsys.log . Typically these are Syntax Errors but missing
 parentheses or semicolons and numerous other conditions will be
 specifically called out. This greatly enhances the debugging experience.

 The following errors are reported:

 Syntax Error
 There is something wrong with the program syntax. The compiler was
 expecting something in the PHP source that it did not find.

 Undefined Function Reference
 You have referenced a function but it has not been defined. The first
 use of the missing function will be displayed.

 Expected Semicolon
 There appears to be a missing semicolon. All statements need to be
 terminated with a semicolon. Additionally the semicolon should be
 properly used in the FOR statement syntax.

 Illegal Break
 A break statement appears outside of a FOREACH, WHILE, DO-WHILE or
 SWITCH structure.

 Illegal Continue
 A continue statement appears outside of a FOREACH, WHILE, DO-WHILE
 or SWITCH structure.

 Expected Paren
 Either an open or close parenthesis is missing.

 Unusable Function Name
 Reserved words or built-in function names cannot be used in the definition
 of user functions. You cannot override existing functions.

 Function Name In Use
 JANOS does not allow you to redefine a function. Standard PHP
 implementations may allow this. If there is a valid application for
 this behavior then this can be reported as a bug. INTEG may then opt to
 eliminate this restriction.

 Page 264

 Illegal File Specification
 A file path or name includes an illegal character.

 File Does Not Exist
 You attempted to include a file that cannot be located. The include
 statement presently requires an absolute file path. If you have an
 application that requires the use of a relative path or to specify a
 file location relative the the WebServer path, report this as a bug.
 INTEG may expand the functionality here.

 At runtime, when compiled bytecode is executed, certain runtime errors
 may occur. Since a page is likely partially rendered before the error
 occurs it will appear to stall. The runtime error will be reported in two
 places. First and error message will be appended to the system log
 jniorsys.log . Secondly the same error message will be added to the php.log
 file in the file system root. In addition, the compiler is asked to locate
 the related line of source code. This is displayed in the php.log file as
 well. In this case the pointer indicates the rough area where execution
 failed.

 The following runtime errors may be reported:

 Stack Error
 This indicates a PHP logic fault. If this occurs and the related PHP
 code appears to be normal then it should be reported as a bug. It
 indicates that the expected results of expressions or functions are
 missing. Normal PHP would not normally cause this to occur.

 Unknown Operation
 This will occur if a PHP operator has been used that has not been
 implemented. The JANOS implementation is a subset of standard PHP and
 not all operations have been implemented. This error should be extremely
 rare. But if you do attempt to use an operation that might be defined
 in the table of precedence but not logically implemented you will get
 this error. There should be a simple work-around. You may report this
 as a bug. INTEG would promptly address the issue.

 Not An Array
 This runtime error will occur if you attempt to reference a non-array
 variable using array syntax. This would be the result of an issue in
 the PHP source. If the program is proper and the statement would have
 performed in some acceptable way under standard PHP, you may report
 this as a bug.

 Bad Bytecode
 This indicates a compiler failure and should be reported as a bug. This
 is a good indication that system integrity has been lost. It should not
 happen.

 Page 265

Example Script Scripting

DESCRIPTION
 The JANOS scripting language can be used in the batch environment. Here the
 script renders commands which are then executed. This is similar to its use
 in the WebServer situation where PHP renders the HTML page which then is
 served. The batch script renders commands which are then executed. One
 difference being that as each command is created it is executed. A complete
 batch file is not rendered and then run. This allows script to respond to
 the results of a previous command.

EXAMPLE
 Batch files have the ability to masquerade as console commands. Here a
 script creates a CKSUMS command which reports general message digest and
 checksum information for requested files. For example:

 bruce_dev /> cksums jniorsys.log /flash/cksums.bat
 file: /jniorsys.log
 date: 1624647433 2021-06-25 18:57:13 UTC
 crc: f76beec3
 md4: 51b9e5115b62af92df900ee7e66b4d68
 md5: 6c958d3dce3edc8ef9a44e380030419b
 sha1: 1b962afcdae46e666407cd64a97ca772d4ee9a8d
 sha256: 69ccdf8f3236d976e244c15994e80271eee1ff2ba72ce0f71268d51fa7357361

 file: /flash/cksums.bat
 date: 1614090556 2021-02-23 14:29:16 UTC
 crc: 5a9ae151
 md4: 2869eedfa73a81d63c99fe60899b2f87
 md5: ef3121cafc74a6ffbb179806d4c7dcef
 sha1: 71fa94ec88fceaea208a2c284f16f7d59911e9ac
 sha256: 44d4e35d87148c63acbdf408d4c94cbcd862d106c5d502ea6da6ba1d22535d17

 bruce_dev />

 Here we request digests for the system log and the script itself. Note that
 the last modified date for the file is also reported. This can be very
 useful in checking file validity by comparing these against digests calculated
 on the original file by the source.

 In considering the script needed to perform this we first see that command
 line parameters are possible and our script needs to process 1 or more
 as necessary. In fact the script allows wildcards and can report for all
 matching files. Secondly the script is executed as a batch file but yet is
 outputting formatted results as opposed to executable commands alone.

 The solution to the command line parameters is to loop through each available
 one and with each parameter gather all matching files looping through each of
 those. Since we had wanted to act like a built-in command we needed to work
 in the batch environment. So to get formatted output we employ the ECHO
 command. A feature of that command under JANOS is that quotation marks may
 be used to avoid white space trimming that can occur under other operating
 systems.

 Page 266

 So here is the script for review:

 bruce_dev /> cat flash/cksums.bat
 <?
 function println($s) {
 puts("@echo \" ".$s."\"");
 };

 for ($n = 1; $n < count($_GET); $n++) {
 $list = scandir($_GET[$n]);
 foreach ($list as $arg) {
 if (is_file($arg)) {
 $time = filemtime($arg);
 println(" file: $arg");
 println(" date: $time ".date("UY-m-d H:i:s T", $time));
 println(" crc: ".file_crc($arg));
 println(" md4: ".file_md4($arg));
 println(" md5: ".file_md5($arg));
 println(" sha1: ".file_sha1($arg));
 println("sha256: ".file_sha2($arg));
 println("");
 }
 }
 }

 bruce_dev />

 The /flash/cksums.bat batch file and therefore this custom command is
 provided by default with JNIORs shipped from the factory.

NOTES
 There are many ways to accomplish this script. Consider the following
 alternative. This eliminates the function println() that issued text as
 an ECHO command and utilizes the JANOS script printf() feature where the
 ECHO is handled in the format string.

 <?
 $format = "@echo \"%7s: %s\"\n";

 for ($n = 1; $n < count($_GET); $n++) {
 $list = scandir($_GET[$n]);
 foreach ($list as $arg) {
 if (is_file($arg)) {
 printf($format, "file", $arg);

 $time = filemtime($arg);
 printf($format, "date", "$time ".
 date("UY-m-d H:i:s T", $time));

 $content = fread($arg);
 printf($format, "crc", crc($content));
 printf($format, "md4", md4($content));
 printf($format, "md5", md5($content));
 printf($format, "sha1", sha1($content));
 printf($format, "sha256", sha2($content));

 Page 267

 }
 }
 }

 The result is quite the same although this executes a bit faster in that it
 reads the file content only once.

 bruce_dev /> cksums etc/JanosClasses.jar
 file: /etc/JanosClasses.jar
 date: 1614613137 2021-03-01 15:38:57 UTC
 crc: e352e30a
 md4: ca9352ee0b28c7ffc7986ef93c9e489b
 md5: 343527bed395496dd31e181895f4b1eb
 sha1: b1f8b5676ecfaaac5eb384a3866330add442ef12
 sha256: 79c14030548637a7009b4812fcbe50677ed89fa72b115b19ab04f9bf6ff123c8

 bruce_dev />

 You can execute this script using the RUN command to examine the command
 output before it is interpreted for batch execution. The RUN command can be
 helpful in debugging scripts that are meant to be used in this fashion. In this
 case you do have to fully specify the script file name since the RUN command
 uses the .PRG extension by default.

 bruce_dev /> run cksums.bat /flash/jbakup.jar
 @echo " file: /flash/JBakup.jar"
 @echo " date: 1680189500 2023-03-30 15:18:20 UTC"
 @echo " crc: c5ef5f45"
 @echo " md4: f07aa62c88cff004c64061f51cc4c87a"
 @echo " md5: b8abf72c38da6e409575c9c4304995f9"
 @echo " sha1: 911b8b5484c2f467c9a668ded93cacc30a6905af"
 @echo " sha256: 634e105d1f734126a6782da0a7449ccaf466d0e88b9eb0e84a4d81181d865497"
 @echo " "

 bruce_dev />

SEE ALSO
 HELP Topics: ECHO, CAT, RUN

 Page 268

JNIOR Models
 There are four (4) models of the JNIOR. These differ only in the mix of I/O.
 Generally each supports 16 I/O points comprising of a mixture of Digital
 Inputs and Relay Outputs. All models provide wired LAN connectivity, a
 Sensor Port (Expansion Bus), and at least one RS-232 serial port (DB-9F).

 DMX
 PWR EXP AUX
 +-----------------+ PWR 12 VDC
 | O O |
 | | EXP Sensor Port Expansion Bus
 [| O O |]
 [| O O |] LAN 100 MBit Ethernet
 A [| O O |] D
 [| O O |] COM RS-232 COM Port (DB-9F)
 | |
 [| O O |] AUX RS-232 AUX Port (DB-9F)
 [| O O |] Models 410, 412, and 414
 B [| O O |] C
 [| O O |] DMX DMX-512 (5-pin)
 | JNIOR | Model 412DMX
 | |
 +-----------------+ A-D Digital I/O
 LAN COM

 Model 410
 8 Digital Inputs (Connectors A and B)
 8 Relay Outputs (Connectors C and D)
 AUX Port RS-232, RS-422 and RS-485 capable.

 Model 412
 4 Digital Inputs (Connector A)
 12 Relay Outputs (Connectors B, C and D)
 AUX RS-232 Port

 Model 414
 12 Digital Inputs (Connectors A, B and D)
 4 Relay Outputs (Connector C)
 AUX RS-232 Port

 Model 412DMX
 4 Digital Inputs (Connector A)
 12 Relay Outputs (Connectors B, C and D)
 Single DMX-512 Universe

SEE ALSO
 HELP Topics: PWR, RELAYS, INPUTS

 Page 269

Power Supply
 JNIOR should be powered by a 12VDC regulated power supply capable of
 providing up to 1 AMP of current.

 The Model 410, 412 and 414 can use a range of supply voltage including AC
 although use of a 12VDC supply is highly recommended. The flexibility is
 provided for applications that may need to operate in unique situations.
 The unit will operate reliably with voltages as low as 10VDC and as high
 as 24VDC. Use of voltages much above 12VDC may lead to excessive waste
 energy in terms of heat and perhaps reduced product life.

 An AC voltage source may be used to power these models. In this case it
 is the peak voltage that is of concern. An AC supply in excess of 16VAC
 (RMS Voltage Vrms) has peaks over 24V and will exceed the rated maximum
 for the product. An advantage to the AC capability is that the DC supply
 leads may be accidentally miswired in reverse and the product will still
 operate.

 The 412DMX must use a 12VDC source.

Connector
 The PWR connector is 4-pin terminal block header on a 0.200" (5.08 mm)
 pitch (Weidmuller 1515110000 for instance). The proper 4-pin screw
 terminal plug is supplied with an INTEG Power Supply or with the 5-piece
 connector kit.

Connections
 The two left positions (closest to the corner of the JNIOR) are (+)
 positive voltage inputs and the two right positions the (-) voltage
 inputs. The pin pairs are buses (connected internally) allowing you to
 tap off of the power supply for additional I/O wiring. This should be done
 with care as switching noise and other issues may result from the external
 connections that can interfere with the JNIOR power quality causing
 reboots or other events.

 + 12VDC -
 | |
 | |
 + + - -
 +-----------------+
 | (\) (|) (/) (\) | Screw Terminal
 +-----------------+ Block
 | | | | |
 | | | | |
 --- --- --- ---

NOTES
 The Models 410, 412 and 414 will operate if the power supply positive and
 negative wires are reversed. The 412DMX requires proper wiring. Care should
 be taken if you plan to tap the supplied voltage for other uses. Use a
 voltmeter to verify proper polarity.

SEE ALSO
 HELP Topics: MODELS

 Page 270

Relay Outputs
 JNIOR models support from 4 to 12 internal SPST relays. These are small
 signal relays rated for a maximum current of 1A (Contact Rating). The
 switching voltage capability of these relays can be up to 220VDC (250VAC).

 Maximum Ratings: 1A 60V

 For higher currents (up to 10A) INTEG supplies the Power 4ROUT external
 module. One or more modules can be connected through the Sensor Port
 expansion bus and add to the relay complement of a JNIOR.

 Relay Ouptuts are dry-contact outputs and do not supply voltage. An
 externally supplied voltage must power the circuit to be switched by the
 relay output. This is import when using the output to signal other
 equipment expecting a voltage input.

 By default Relay Outputs are Normally Open (NO) not enabling the external
 circuit until activated. When a relay is closed by the JNIOR the associated
 red LED will illuminate.

 Internally the JNIOR offers jumpers that can reconfigure a relay output to
 Normally Closed (NC) constantly enabling the external circuit being switched.
 In this case the relay is activated to interrupt the circuit. This may be
 useful perhaps to temporarily remove power from an external device
 effectively resetting it.

 The NC option on the Model 410 is available for the top 2 relays on
 connector D (see MODELS). The Model 412 (and Model 412DMX) offer 4
 configurable relays. These are the top 2 on connectors B and D. The Model
 414 has 2 configurable relays being the top 2 on connector C.

Connector
 Relays are grouped 4 to a connector. These are 8-pin terminal block headers
 on 0.200" (5.08 mm) pitch (Weidmuller 1510910000 for instance). The proper
 8-pin screw terminal plugs are supplied with the connector kit.

Connections
 Each relay uses a pair of adjacent pins. These are completely independent of
 the other relay connections.

SEE ALSO
 HELP Topics: MODELS, INPUTS

 Page 271

Digital Inputs
 The JNIOR Digital Inputs are voltage sensing. Any voltage applied in excess
 of 2.5V will activate the input. The red LED will illuminate. These are not
 high impedance inputs and have an equivalent resistance of about 1,200 Ohms.
 The connected signal source must be capable of supplying at least 25ma of
 current in order to trigger an input.

 Maximum Voltage Rating: 30V

 Inputs are filtered and will detect and count transitions to a frequency of
 about 1,800 Hz. These inputs are also debounced by default. This is
 configurable by Registry setting.

 Higher voltages may be sensed by inserting an additional series resistance.

Connector
 Inputs are grouped 4 to a connector. These are 8-pin terminal block headers
 on 0.200" (5.08 mm) pitch (Weidmuller 1510910000 for instance). The proper
 8-pin screw terminal plugs are supplied with the connector kit.

Connections
 Each input uses a pair of adjacent pins. The (+) positive input of each pair
 is that closest to the top (PWR end) of the JNIOR. This is true even with
 Digital Inputs located on the opposite side of the product as in the
 Model 414.

SEE ALSO
 HELP Topics: MODELS, RELAYS, DIN

 Page 272

COM Serial Port
 Both the COM and AUX (when present) serial ports use a D-sub DB-9F connector
 defined to be compatible with a a simple M-F DB9 extension cable and
 connection to a standard PC serial port. Since the latter is rare these days
 a USB-to-Serial adapter with DB-9M connector can make the connection.

 The RS-232 COM port, located at the bottom of the JNIOR next to the LAN
 Ethernet port, supports a 3-wire serial connection. The default is 115,200
 Baud using 8 Data bits, 1 stop bit and no parity. Only software flow control
 is available. Flow control is disabled by default.

 ---------COM---------
 \ (5) (4) (3) (2) (1) / DB9F Connector Front View
 \ (9) (8) (7) (6) /

 Pin Assignments
 Pin 2 - Transmit Out (Tx) Active driver output from JNIOR
 Pin 3 - Receive In (Rx) from remote system
 Pin 5 - Ground reference (GND)
 other - No connection.

NOTES
 The GND is not equivalent to the (-) negative power input in all models
 except the 412DMX (which requires DC power). This GND floats somewhere
 between the (+) positive and (-) negative power connections.

 The JNIOR serial ports are not isolated. Care should be taken not to create
 unwanted ground loops.

SEE ALSO
 HELP Topics: MODELS, AUX_PORT, IOLOG

 Page 273

AUX Serial Port
 Both the COM and AUX (when present) serial ports use a D-sub DB-9F connector
 defined to be compatible with a a simple M-F DB9 extension cable and
 connection to a standard PC serial port. Since the latter is rare these days
 a USB-to-Serial adapter with DB-9M connector can make the connection.

 The RS-232 AUX port is located at the top of the JNIOR next to the POWER and
 Sensor Port Expansion Bus connections. In addition to the 3-wire communication
 connections this port also supports RTS/CTS hardware handshake. The default is
 115,200 Baud using 8 Data bits, 1 stop bit and no parity. Both hardware and
 software flow control are disabled by default. The hardware RTS/CTS lines
 need no connection for port operation.

 ---------AUX---------
 \ (5) (4) (3) (2) (1) / DB9F Connector Front View
 \ (9) (8) (7) (6) /

 Pin Assignments
 Pin 2 - Transmit Out (Tx) Active driver output from JNIOR
 Pin 3 - Receive In (Rx) from remote system
 Pin 5 - Ground reference (GND)
 Pin 7 - Request to Send In (RTS) from remote system
 Pin 8 - Clear to Send Out (CTS) Active signal output by JNIOR
 other - No connection.

RS-422/RS-485
 On the Model 410 the AUX port may be configured for RS-422 or RS-485
 operation. The latter allowing applications to fully support 2 and 4 wire
 full-duplex multi-drop communication networks at up to 250 kBaud.

 Early Model 410 PCBs included internal jumpers providing an easy way to bridge
 Receive and Transmit lines for 2-wire RS-485. A third jumper provided the
 necessary 120 Ohm termination resistor. For proper balancing a termination
 resistor should be located at both ends of an RS-485 communication line.

 While the jumper location on the PCB is no longer populated it remains
 available and may be optionally soldered for this purpose. The bridging and
 termination resistor can also be externally applied.

 ---------AUX---------
 \ (5) (4) (3) (2) (1) / DB9F Connector Front View
 \ (9) (8) (7) (6) /

 Pin Assignments (RS-422 and RS-485 Modes)
 Pin 2 - 485TX (-) Active driver output from JNIOR
 Pin 3 - 485RX (-)
 Pin 5 - Ground reference (GND)
 Pin 7 - 485RX (+)
 Pin 8 - 485TX (+) Active driver output from JNIOR
 other - No connection.

 Page 274

 Proper RS-485 bridging (bi-directional 2-wire communications):

 * short Pin 2 (485TX-) with Pin 3 (485RX-)
 * short Pin 8 (485TX+) with Pin 7 (485RX+)
 * include 120 Ohm resistor between plus (+) and minus (-)
 lines at transmitter and farthest end of the line.

 The Java com.integpg.comm.AUXSerialPort class provides support for
 configuring and controlling the AUX Serial Port. This includes the driver
 control necessary to support full-duplex 2-wire networking.

NOTES
 The GND is not equivalent to the (-) negative power input in all models
 except the 412DMX (which requires DC power). This GND floats somewhere
 between the (+) positive and (-) negative power connections.

 The JNIOR serial ports are not isolated. Care should be taken not to create
 unwanted ground loops.

SEE ALSO
 HELP Topics: MODELS, COM_PORT, IOLOG

 Page 275

Sensor Port Expansion Bus
 The Sensor Port Expansion Bus is located at the top of the JNIOR between the
 POWER and AUX serial port. This is a proprietary 6-wire communication bus.

 INTEG provides a number of expansion modules that are connected in a
 daisy-chain fashion to this port. These modules include a Power 4ROUT module
 offering 10A relays, both 10V and 4-20ma analog modules, and a rack-mounted
 Control Panel. In addition there are temperature and humidity sensors
 available.

CABLES
 Standard length cables are supplied with purchased expansion modules. Custom
 length cables may be requested or constructed by the customer. The maximum
 overall network length should not exceed 50 feet or 15 meters.

 Wire - 6-conductor flat modular cable (26 AWG)
 Plug - 6p6c (RJ12) unshielded IDC (2 required)
 Tool - RJ11/RJ12/RJ45 Network & Phone Crimp Tool

 tab ---\
 /-----+ +-----+
 | |===| |
 +-----+ +-----/
 \--- tab

 Note: Tab locations for proper cable construction.

NOTES
 Devices generally are connected in a serial daisy-chain fashion. The network
 length is measured from the JNIOR to the furthest connected device. Success
 with various cable lengths will be highly dependent on factors many of which
 are not predictable. Your experiences may vary. Operation is not guaranteed
 with network lengths over 20 feet or 6 meters. Performance is also dependent
 on the number and types of modules employed.

 If a sensor must be located far from the JNIOR consider placing the JNIOR
 closer to the sensor as opposed to a lengthy cable. This will reduce
 communications errors and retries which ultimately will improve performance.

SEE ALSO
 HELP Topics: MODELS

 Page 276

ETC Reference

DESCRIPTION
 The /etc folder is a read-only section of the File System. This
 presently contains the JanosClasses.jar runtime library used by
 the JNIOR Java Virtual Machine (JVM) in executing application programs.

 The JanosClasses.jar file may be downloaded and used in compiling Java
 programs designed to run on the JNIOR. These program should be built
 with this JAR as the 'bootclasspath'. This provides the complete set
 of runtime classes required by JNIOR application programs.

 More information on compiling applications for JNIOR can be obtained
 through the website at integpg.com or jnior.com .

SEE ALSO
 HELP Topics: PROGRAMMING, JVM, JAVA

FLASH Reference

DESCRIPTION
 The JNIOR maintains a File System in several memory areas. The contents
 of the /flash folder are stored in non-volatile Flash Memory. This
 provides safe storage for application programs, web pages and other
 critical data.

SEE ALSO
 HELP Topics: JRFLASH

TEMP Reference

DESCRIPTION
 The JNIOR maintains a File System in several memory areas. The /temp
 folder is available for temporary file storage. The contents are erased
 after a reboot.

 JANOS can be updated by uploading the appropriate UPD file. This file is
 quite large and is only required during the update. The /temp folder
 is an ideal destination for the upload. The JRUPDATE command can then
 reference the file and it is removed during the reboot in completing
 the update.

 The network PCAPNG capture file that can be generated by the NETSTAT
 command is quite large and is therefore placed in the /temp folder.
 It must be downloaded before a reboot.

SEE ALSO
 HELP Topics: JRUPDATE, NETSTAT

 Page 277

USERS MANUAL Reference

 A complete and printable Users Manual is available when accessing the Help
 System through the WebUI.

DESCRIPTION
 The Help System auto-generates the Users Manual specific with the content
 of the current JNIOR. This not only includes Help information for the
 version of JANOS operating system but also that available for any installed
 applications.

 Creation of the custom Users Manual can take several seconds. The result is
 printable and can be saved as a PDF depending on your computer's print
 capabilities. When saved as a PDF the links may be active, providing an
 interactive manual that may be shared among JNIOR users.

SEE ALSO
 HELP Topics: HELP, SUPPORT

TIMEZONES Reference

 The clock subsystem is generally configured using the DATE command. JANOS
 defines a set of Timezones for use in displaying local time. These timezones
 may or may not utilize Daylight Saving Time (DST). The DATE -T command
 displays the current set of available timezones.

 The rules for DST may change from time to time as governments alter their
 policies. The default list of timezones will likely become incorrect at some
 point. JANOS provides a means by which you may define a custom timezone with
 or without a DST rule. You may even correct an existing timezone.

DESCRIPTION
 The following key format is used to create a new timezone or overwrite an
 existing timezone. Note that timezones are identified by their standard
 abbreviation (ABBSTD). The timezone for Eastern Standard Time is identified
 as "EST". Since the default definition of this timezone includes a Daylight
 Saving Time (DST) rule, the DATE command can also select this timezone using
 the DST abbreviation "EDT".

 reg Timezones/NAME = OFFSET, DESC, ABBSTD [, ABBDST, STMON, STDAY,
 STDOW, STTIME, ENDMON, ENDDAY, ENDDOW, ENDTIME, DSTOFS]

 NAME
 The NAME portion of the key is arbitrary and serves only to differentiate
 the key from others.

 OFFSET
 The offset in minutes from UTC specified in military time in the format
 HHMM. For example -0500 subtracts 5 hours from UTC. The value 0630 adds
 six and a half hours to UTC.

 Page 278

 DESC
 Supplies a textual description of the timezone. For instance "Universal
 Coordinated" for UTC.

 ABBSTD
 Defines the standard abbreviation for the timezone. This is the
 identifier that is used with the date and time to specify the current
 timezone. It is used by the DATE command in setting the current timezone.
 If this matches an existing timezone the built-in definition will be
 overwritten. Otherwise a new timezone will be created.

 The following parameters are required only when specifying a DST rule.

 ABBDST
 Defines an alternate abbreviation for the timezone. This is the
 identifier that is used with the date and time to specify the current
 timezone when Daylight Saving Time is in effect. It can be used by the
 DATE command in setting the current timezone.

 STMON
 Specifies the starting month for DST. A 3-character abbreviation is
 used: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC.
 This field is not case-sensitive although uppercase is recommended by
 convention.

 STDAY
 Specifies the starting day of the month. This is a numeric value where
 1 specifies the first day of the month. If it is necessary to specify a
 certain number of days before the end of the month, a negative value
 can be entered. Since DST usually begins (and ends) on a specific day
 of the week, this value is used to select the correct part of the month
 for that day.

 STDOW
 Specifies the day of the week on which DST starts. A 3-character
 abbreviation is used: SUN, MON, TUE, WED, THU, FRI, or SAT. This field
 is not case-sensitive although uppercase is recommended by convention.
 This defines the day of the week on or after the starting day. If it is
 necessary to specify the day of the week on or before the starting day,
 a negative sign may be prepended to the string (e.g. "-SUN").

 STTIME
 Specifies the starting time for DST in military time using the format
 HHMM. For example 0200 indicates 2 o'clock in the morning. This is the
 point in time when the clocks are to be adjusted.

 ENDMON
 Specifies the ending month for DST. A 3-character abbreviation is used:
 JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC. This
 field is not case-sensitive although uppercase is recommended by
 convention.

 ENDDAY
 Specifies the ending day of the month. This is a numeric value where 1
 specifies the first day of the month. If it is necessary to specify a

 Page 279

 certain number of days before the end of the month, a negative value
 can be supplied.

 ENDDOW
 Specifies the day of the week on which DST ends. A 3-character
 abbreviation is used: SUN, MON, TUE, WED, THU, FRI, or SAT. This field
 is not case-sensitive although uppercase is recommended by convention.
 This is the day of the week on or after the ending day. If it is
 necessary to specify the day of the week on or before the ending day,
 a negative sign may be prepended to the string (e.g. "-SUN").

 ENDTIME
 Specifies the ending time for DST in military time in the format HHMM.
 For example 0200 indicates 2 o'clock in the morning. This is the point
 in time when the clocks are to be returned to standard time.

 DSTOFS
 This defines in minutes the adjustment that occurs when daylight saving
 time is in effect. Typically this value is 60 indicating that the clocks
 move ahead an hour for DST.

NOTES
 There are two forms to the key. The simple form requires only the first 3
 fields. This defines a timezone that does not use DST. The full format
 requires 13 fields where the additional entries outline the use of DST in
 that timezone. The DST definition provides an additional abbreviation,
 specifies start and end timing, and defines the time offset.

 This Registry key is interpreted, and therefore take effect, on boot. The
 new or modified timezones will appear in the table produced by the DATE -T
 command. The JNIOR may then be switched to the new timezone which will
 remain in existence until the Registry key is removed or altered. Note that
 when time is reported to external systems, a custom timezone may not be
 recognized if its abbreviation is not common and known to the rest of the
 world.

 A Timezone key will be ignored if it contains a syntax or value error.
 These errors will be reported to the system log (SYSLOG).

EXAMPLES
 For example, the following Registry command makes an entry that redefines
 the Eastern Timezone in the United States with an ego-centric description
 for those of us in Pittsburgh Pennsylvania.

 reg Timezones/YinzerTime = "-0500, America/Pittsburgh, EST"

 This would not be exactly correct as the EST timezone observes Daylight
 Saving Time. We need to also include the rule.

 reg Timezones/YinzerTime = "-0500, America/Pittsburgh, EST, EDT,
 MAR, 8, SUN, 200, NOV, 1, SUN, 200, 60"

 And perhaps instead of redefining EST we would prefer to create our own
 timezone, the entry would change as follows. Note that only the ABBSTD
 need be changed but we alter the ABBDST to be consistent.

 Page 280

 reg Timezones/YinzerTime = "-0500, America/Pittsburgh, YST, YDT,
 MAR, 8, SUN, 200, NOV, 1, SUN, 200, 60"

SEE ALSO
 HELP Topics: DATE

LOGS Reference

LOGGING
 JANOS creates a number of log files. These are text files where generally a
 single line represents some event. Each entry has a timestamp to the
 millisecond shown in the local timezone. The (Java date) format is as
 follows:

 MM/DD/yy HH:mm:ss.SSS, message...
 05/28/21 09:25:52.000, Clock synchronized via NTP (+6)

 System log files are located in the root of the File System and are
 limited in size. When a log file reaches approximately 64KB in size
 it is aged. The .LOG file is then saved as a .LOG.BAK file overwriting
 any previous backup and a new .LOG file is started. A SYSLOG Server may
 be optionally defined which will receive notice of logged events.

 /jniorsys.log

 This is the main system log containing general log notices. Entries appear
 here when the unit boots, processes are started, Registry keys are altered,
 etc. Any issues with the system will be reported here.

 /jniorboot.log

 This is a record of the most recent boot. This includes diagnostic reports.
 Any issue in start-up will be reported in this log. Unlike other log files
 this file contains only the most recent start-up detail. On the next boot
 the content is appended to the associated .LOG.BAK file which remains
 constrained to a maximum length of 64KB.

 /jniorio.log

 This is generated by the IOLOG command. It will contain I/O logs for all
 recent Digital Input and Relay Output state changes.

 /auxio.log

 This is generated by the IOLOG -A command. It will contain a detailed
 record of serial communications over the AUX port.

 /sensorio.log

 Also generated by the IOLOG -S command, this contains details of Sensor
 Port communications.

 Page 281

 /jmpserver.log

 This contains log information pertaining to access and use of the
 JANOS Management Protocol (JMP). JMP is a JSON based protocol current
 recommended for JNIOR communications.

 /protocol.log

 This contains log information pertaining to access and use of the
 legacy JNIOR Protocol.

 /access.log

 Contains notices of failed login attempts.

 /web.log

 This is a detailed WebServer log.

 /tls.log

 This log reports issues with SSL/TLS secure communications.

 /php.log

 Logs errors and event pertaining the the JANOS PHP-like scripting language.

 /errors.log

 Errors encountered by applications are logged here. If you understand the
 reason for the logged error detail you should delete this LOG. It is
 important to recognize when errors occur and thus want to see when this
 log file appears. The presence of an errors.log file sets the unit's
 attention flag.

 /dump.log

 In an extreme situation the operating system may need to shutdown and
 restart. A dump is generated that can be used by INTEG to further debug
 the situation. If you have updated JANOS since the dump file was created
 you should delete it. The presence of a dump.log sets the unit's attention
 flag.

SEE ALSO
 HELP Topics: CAT, IOLOG

 Page 282

ENVIRONMENT Reference

 Unlike the Registry the Environment is local to and specific for each
 running process. This contains NAME-VALUE pairs and variables are
 case-dependent. When a process is started it inherits the Environment
 from its parent.

 The System uses certain Environment variables to convey information.
 Applications are free to use environment variables to pass parameters
 or to temporarily store state information.

 The SET command is used to view and define environment content.

SYSTEM VARIABLES

 BKSP
 The backspace key has a different usage on Linux based systems.
 The command line process attempts to detect the intended use and
 when it does sets the BKSP variable. A value of '1' indicates that
 the connecting terminal is Windows based or otherwise uses the
 backspace similarly.

 CD
 This holds the Current Directory. The current working directory is
 also displayed as the command line prompt. File paths not beginning
 with the path separator '/' are relative to the current directory.

 CMDLINE
 Contains the command line used to execute an program. The parent
 process stores the command line here, executes the application and
 then removes it. A program can retrieve the command line used to start
 it.

 COLUMNS
 Defines the display width in characters. The default and minimum
 is 80. This is used in formatting output from commands such as
 HELP and DIR.

 ERRORLEVEL
 Programs generally return a numeric result. This is typically zero '0'
 upon successful completion. The returned value can be used as an error
 code or other purpose. The returned value is placed in the ERRORLEVEL
 variable.

 RUNKEY
 RUNCMD
 These variables are set when an application has been started using
 a Run/ Registry Key. Application programs can be started at boot
 using these keys. RUNKEY provides the key name. RUNCMD holds the
 key value which would be the command line command starting the
 program.

NOTES
 Environment variables can be referenced by commands in batch files.
 A variable name surrounded by percent '%' signs in a batch command

 Page 283

 line are replaced with the value of the variable.

SEE ALSO
 HELP Topics: SETENV, BATCH

Network Filtering Reference

DESCRIPTION
 The content of a network capture can be filtered either on the incoming or
 outgoing side. Using the same filter syntax the remote clients allowed to
 interact with the JNIOR can be controlled. These filters can be quite simple
 or, if needed, much more sophisticated.

 The IpConfig/CaptureFilter Registry key may optionally define a filter
 which is applied to incoming packet data prior to capture. There is limited
 storage for captured information and by filtering you can extend the capture
 period and the amount of pertinent information collected.

 A filter may also be used in generating the /temp/network.pcap capture file
 from the capture buffer content using the NETSTAT -C command. Here the filter
 allows you to extract only pertinent information in order to keep the file
 size at a manageable level. The resulting file can be downloaded and opened
 directly using Wireshark https://wireshark.org .

 The IpConfig/Allow Registry key may optionally define a filter which is
 applied to incoming connections. In this case the referenced IP addresses
 refer to the incoming source IP addresses, those of remote clients.
 Referenced port numbers refer only to destination ports, those available on
 the JNIOR.

SYNTAX
 IP Addresses
 To filter packets referencing a specific IP address you need only include
 the IP address in the format “nnn.nnn.nnn.nnn” in the filter string. Any
 packet that references this IP address either as the source or the
 destination address will be selected for inclusion. All other packets
 will be excluded unless covered by some other part of the filter. When
 filtering remote client connections this specifies a specific IP address
 to allow. Note that this is a dangerously limiting restriction on remote
 clients.

 To exclude packets referencing a certain IP address you can prepend a ‘!’
 exclamation point to the address like this “!nnn.nnn.nnn.nnn”. All
 packets that do reference the IP address as either a source or
 destination address will NOT be selected for inclusion. This can also be
 written as “NOT nnn.nnn.nnn.nnn”. This may be especially helpful to
 filter your IP address while debugging communications with other devices.
 In filtering remote client connections, the NOT syntax is ideal for
 blocking the client based upon IP address.

 Page 284

 Note that an IP address is identified by its format, four decimal values
 between 0 and 255 separated by the ‘.’ period.

 The domain syntax allows you to define a range of IP addresses as would
 be associated with a netmask. The format is “nnn.nnn.nnn.nnn/mm” where
 ‘mm’ specifies the number of high order bits that would be in the netmask.
 For example, “10.0.0.0/24” specifies any IP address in the domain that
 contains IP addresses 10.0.0.1 through 10.0.0.255 and uses a netmask of
 “255.255.255.0”. This is useful in selecting only local traffic for
 instance. It would also be perfect for allowing only clients from a
 specific network to connect to the unit.

 MAC Addresses
 Although less often required you can filter on a specific MAC address.
 The MAC address is included in the filter string in the format
 “hh:hh:hh:hh:hh:hh”. This is six hexadecimal values (0-9 a-f) not
 case-sensitive separated by the ‘:’ colon. For instance most INTEG
 Series 4 JNIORs have MAC address formatted as “9C:8D:1A:hh:hh:hh” where
 the lower three bytes are assigned uniquely in some sequence.

 As with IP addressing, packets with MAC addresses may be excluded by
 writing the filter as “!hh:hh:hh:hh:hh:hh” or “NOT hh:hh:hh:hh:hh:hh”.
 Again a MAC address is identified by its format. A MAC address would
 rarely be appropriate in filtering a remote client however.

 Ports
 A port is specified in the filter string as a decimal value between 1
 and 65535 inclusive. No punctuation is required. The capture filter does
 not distinguish between a TCP or UDP port number. A port may be excluded
 using the negation “!nnn” or “NOT nnn”. When filtering remote client
 connections the filter logic can use this to block the client from
 accessing a specific function by port.

 There are standard ports assigned for various functions. The capture
 filter knows some of them by name. Some may be reconfigured through the
 Registry. As a convenience the port may be specified using its protocol
 name. The capture will be filtered on the port as configured at the time
 the filter is compiled (at boot or upon NETSTAT command). JANOS
 recognizes these port names where the default values are shown in
 parentheses: SMTP (25), NTP (123), JNIOR (9200), JMP (9220), FTP (21),
 HTTP (80), HTTPS (443), TELNET (23), and BEACON (4444). These ports may
 be excluded using the same negation syntax as previously shown.

 Boolean Constants
 The capture filter will also recognize the terms TRUE and FALSE. TRUE
 indicates that the packet is to be included and FALSE otherwise.

 Logical Operations
 To filter on a single IP address, MAC address or port (or to exclude a
 single item) the filter need only specify the address or port in the
 proper format. The following would select the communications involved
 in an email transfer. If this is used as an incoming filter, only email
 transactions would be captured. If this is used with NETSTAT -C in
 generating the PCAPNG file, the file would only include email
 communications.

 Page 285

 NETSTAT -C SMTP
 netstat -c 25

 Note that filters (and also commands) are not case-sensitive. The forms
 above will create a PCAPNG file with just outgoing email communications.
 This assumes that you have not reconfigured the SMTP port. If you have
 set Email/Port to another port (587 for instance) then the first line
 will extract your email communications and the second will not. Although
 the second filter might show an application trying to use the incorrect
 port.

 Filters often need to be slightly more complex in order to include the
 collection of communications needed. The syntax allows you to specify
 any number of addresses or ports in any combination using AND, OR and
 XOR logic. As an alternative you may use the notation && and || for
 AND or OR respectively.

 As an example perhaps you want to filter only email communications with
 the SERVER whose IP address is 10.0.0.4

 netstat -c "10.0.0.4 && smtp"

 If you want to also include BEACON communications you might write the
 filter as:

 netstat -c "10.0.0.4 AND smtp OR beacon"

 Here you might question the order of precedence of the logical operations.
 The capture filters do not support an order of precedence but perform the
 operations from left to right. So this would be calculated as follows:

 netstat -c "(10.0.0.4 && SMTP) || BEACON"

 And this would have done what we had said. If there is some question you
 can use the parentheses in the filter as shown. The following will create
 the same subset of packets but would not if we were to exclude the
 parentheses:

 netstat -c "BEACON || (10.0.0.4 && SMTP)"

 A parentheses grouping can be negated as you would expect. The following
 will create a capture of all activity EXCEPT email communications with
 the SERVER.

 netstat -c "!(10.0.0.4 && smtp)"

 Finally if we had wanted to mask these email communications from the
 overall capture buffer we can install this filter using the command:

 netstat -f "!(10.0.0.4 && smtp)"

 This would result in the following Registry setting and would filter
 out matching communications until such time as the filter is removed.

 Page 286

 IpConfig/CaptureFilter = "!(10.0.0.4 && smtp)"

NOTES
 Filters containing space characters and logical AND and OR operators need to
 be surrounded by quotes. This is to insure that the entire filter string is
 properly processed as a single parameter to the NETSTAT command.

 This same Filter syntax is used by the IpConfig/Allow Registry key the
 purpose of which is to limit access to the JNIOR. Care needs to be
 exercised in setting this key as you may end up preventing your own
 access to the JNIOR. If this occurs you must reset the filter through
 the COM RS-232 serial port.

SEE ALSO
 HELP Topics: NETSTAT, SAFEMODE

SAFEMODE Reference

DESCRIPTION
 A JNIOR may be booted into SAFEMODE using the small jumper located
 between the LAN and COM RS-232 ports. A switch may be wired to the
 jumper and if activated briefly would reset/reboot the JNIOR. A
 well-behaved reboot occurs. If the switch is held through the reboot
 SAFEMODE is activated. This mode is noted in the command line banner.

NOTES
 SAFEMODE temporarily enables the default administrator login credentials.
 This is to assist those who have changed and subsequently forgotten the
 passwords.

 SAFEMODE does not automatically start application programs (RUN keys).
 If an application program somehow causes an issue whereby the JNIOR
 enters a tight reboot loop, this will regain access to the unit letting
 you remove or correct the faulty application.

 The IpConfig/Allow Registry key is ignored in SAFEMODE. This will
 temporarily allow access to network services when a faulty access Filter
 has been set. The faulty Registry key can be removed.

 JANOS registers applications during boot. SAFEMODE skips this application
 procedure.

SEE ALSO
 HELP Topics: FILTER

 Page 287

REGEX Regular Expressions

REFERENCE
 Searches and replacements can be performed using Regular Expressions
 or REGEX.

 Supported metacharacters:
 . dot matching any character (except CR or LF)
 ? question mark previous zero or one time
 + plus sign previous one or more times
 * asterisk previous zero or more times
 | alternation (OR) match either expression
 [] character class any character listed
 [^] negated character class any character not listed
 [-] character range define inclusive range of characters
 ^ caret matches position at the start of a line
 $ dollar matches position at the end of the line
 () parentheses limits scope for alternation and
 provides grouping for quantifiers
 ?? question mark previous zero or one time - lazy
 +? plus sign previous one or more times - lazy
 *? asterisk previous zero or more times - lazy

 A lazy operation is satisfied with the shortest match for the quantified
 portion of the expression. Normally the Regex engine will continue to
 search for a better (longer) match. That is a slower process and not always
 necessary.

 Escaping

 The backslash '\' character is used to escape a number of characters that
 otherwise have REGEX function. This also allows you to use non-printable
 characters such as tabs, backspaces, carriage returns, etc. There are
 macros defined that each expand into a set of characters which can be
 convenient.

 escaped non-printable:
 \a 0x07 BEL (bell)
 \b 0x08 BS (backspace)
 \t 0x09 TAB (tab)
 \n 0x0A LF (line feed)
 \v 0x0B VT (vertical tab)
 \f 0x0C FF (form feed)
 \r 0x0D CR (carriage return)
 \e 0x1B ESC (escape)

 hexadecimal entry:
 \xHH where HH represents two hexadecimal digits

 meta characters (macros):
 \w [a-zA-Z0-9] word characters
 \W [^a-zA-Z0-9] not word characters
 \d [0-9] decimal digits
 \D [^0-9] not decimal digits
 \s [\f\n\r\t\v] match whitespace

 Page 288

 \S [^ \f\n\r\t\v] not whitespace

NOTES
 When including a REGEX on the command line or in a string you will need to
 again escape the escape character. So to include a tab the escape sequence
 would be "\\t".*

SEE ALSO
 HELP Topics: EGREP, GREP, REG, HIST

 Page 289

ASCII Table

 Dec Hex Chr Dec Hex Chr Dec Hex Chr Dec Hex Chr
 0 00 NUL (null) 32 20 (space) 64 40 @ 96 60 `
 1 01 SOH (start of header) 33 21 ! 65 41 A 97 61 a
 2 02 STX (start of text) 34 22 " 66 42 B 98 62 b
 3 03 ETX (end of text) 35 23 # 67 43 C 99 63 c
 4 04 EOT (end of transmission) 36 24 $ 68 44 D 100 64 d
 5 05 ENQ (enquiry) 37 25 % 69 45 E 101 65 e
 6 06 ACK (acknowledge) 38 26 & 70 46 F 102 66 f
 7 07 BEL (bell) 39 27 ' 71 47 G 103 67 g
 8 08 BS (backspace) 40 28 (72 48 H 104 68 h
 9 09 TAB (horizontal tab) 41 29) 73 49 I 105 69 i
 10 0A LF (new line) 42 2A * 74 4A J 106 6A j
 11 0B VT (vertical tab) 43 2B + 75 4B K 107 6B k
 12 0C FF (new page) 44 2C , 76 4C L 108 6C l
 13 0D CR (carriage return) 45 2D - 77 4D M 109 6D m
 14 0E SO (shift out) 46 2E . 78 4E N 110 6E n
 15 0F SI (shift in) 47 2F / 79 4F O 111 6F o
 16 10 DLE (data link escape) 48 30 0 80 50 P 112 70 p
 17 11 DC1 (device control 1) 49 31 1 81 51 Q 113 71 q
 18 12 DC2 (device control 2) 50 32 2 82 52 R 114 72 r
 19 13 DC3 (device control 3) 51 33 3 83 53 S 115 73 s
 20 14 DC4 (device control 4) 52 34 4 84 54 T 116 74 t
 21 15 NAK (negative acknowledge) 53 35 5 85 55 U 117 75 u
 22 16 SYN (synchronous idle) 54 36 6 86 56 V 118 76 v
 23 17 ETB (end of block) 55 37 7 87 57 W 119 77 w
 24 18 CAN (cancel) 56 38 8 88 58 X 120 78 x
 25 19 EM (end of medium) 57 39 9 89 59 Y 121 79 y
 26 1A SUB (substitute) 58 3A : 90 5A Z 122 7A z
 27 1B ESC (escape) 59 3B ; 91 5B [123 7B {
 28 1C FS (file separator) 60 3C < 92 5C \ 124 7C |
 29 1D GS (group separator) 61 3D = 93 5D] 125 7D }
 30 1E RS (record separator) 62 3E > 94 5E ^ 126 7E ~
 31 1F US (unit separator) 63 3F ? 95 5F _ 127 7F DEL

 Page 290

 Morse Code Reference

 STATUS LED CODES
 The orange Status LED can at times be used to convey information using Morse
 Code. Most notably, after disconnecting the Ethernet LAN connection the JNIOR
 will convey the last octet of its assigned IP address flashing each digit in
 Morse Code.

 An application can use the Java JANOS.morseStatusLED() method to output
 and repeat any message in Morse Code. This potentially can convey a complex
 error message in the absence of any display and remote access.

 MORSE CODE
 The following is the International Morse Code implemented by JNIOR. A
 dot is indicated by the asterisk '*' and a dash by a series of dashes
 '---'. The spaces between dots and dashes in the same letter are the same
 length as a dot; The spaces between letters are equal to 3 dots; And, the
 space between two words is equal to 7 dots. Phrases are repeated with a
 space equal to 15 dots after the last.

 Digits

 1 * --- --- --- --- 6 --- * * * *
 2 * * --- --- --- 7 --- --- * * *
 3 * * * --- --- 8 --- --- --- * *
 4 * * * * --- 9 --- --- --- --- *
 5 * * * * * 0 --- --- --- --- ---

 Letters

 A * --- N --- *
 B --- * * * O --- --- ---
 C --- * --- * P * --- --- *
 D --- * * Q --- --- * ---
 E * R * --- *
 F * * --- * S * * *
 G --- --- * T ---
 H * * * * U * * ---
 I * * V * * * ---
 J * --- --- --- W * --- ---
 K --- * --- X --- * * ---
 L * --- * * Y --- * --- ---
 M --- --- Z --- --- * *

NOTES
 Note the pattern used with digits. This is easily remembered and can help
 make the IP octet decoding useful.

 The length of code to represent letters is based roughly on the frequency of
 the occurrence of letters in English text. As such the E is a single dot and
 the letter T a single dash.

 Page 291

 The status LED on the back of the Control Panel PCB also uses Morse Code.

SEE ALSO
 HELP Topics: NETWORK_ACCESS

JSON Data Format

DESCRIPTION
 JSON (JavaScript Object Notation) is a lightweight data-interchange
 format. It is easy for humans to read and write. It is easy for machines
 to parse and generate.

 JSON is used by MANIFEST to save file information for use in later
 file verification. It is also used by JMP (JANOS Management Protocol).

 Go to https://json.org for more information.

SEE ALSO
 HELP Topics: CAT, MANIFEST, JMP

JNIOR Protocol

DESCRIPTION
 The JNIOR Protocol is a legacy binary protocol developed to support the
 Series 3 JNIOR. This is a deprecated protocol and not recommended for new
 development. The binary protocol supports the JNIOR internal I/O and not
 much beyond that.

 This has been replaced with the JANOS Management Protocol (JMP) which uses
 the much more easily understood JSON message format. In addition the JMP
 Protocol is designed to provide tools for the complete management of the
 JNIOR.

NOTES
 This protocol NOT RECOMMENDED for new development.

SEE ALSO
 HELP Topics: JMP, JSON

 Page 292

Terminal Compatibility

CONSOLE TERMINAL
 Most operating systems, and JANOS is no exception, utilize some form of
 Command Line Interface. With the JNIOR, the command line can be accessed
 serially through the RS-232 (COM) port at 115,200 baud, 8 data bits, 1 stop
 bit and no parity. Typically these days this is accomplished with a
 USB-To-Serial adapter and a terminal program. When the JNIOR is properly
 configured for the network, any number of Telnet client programs can be used
 to access the command line. With the Series 4 JNIOR one can also open the
 default Dynamic Configuration Pages (WebUI) using a standard browser. In this
 case the command line is referred to as a Console Session and you can login
 via the Console tab.

 The command line interface uses the standard ASCII character set and is not
 graphical. Telnet client programs and terminal emulators communicate on a
 character by character basis allowing you to utilize the features of the
 JANOS command line. In general a program supporting the ANSI or VT-100 escape
 sequences is required. While you can interact successfully with only a basic
 terminal passing keystrokes and displaying characters, the experience is
 greatly improved when the correct emulation is in place.

 JANOS utilizes only a basic subset of the VT-100 codes. These will be outlined
 below. It is recommended that any custom terminal emulation program be written
 to support these sequences.

KEYBOARD EMULATION
 Keystrokes are sent to the JNIOR for processing. If appropriate they are echoed
 for display by the JNIOR. ASCII characters fall into the range 0 to 127 which
 encompasses the standard character set with punctuation and a series of control
 characters (values less than 32). There are a number of special keys on the
 standard computer keyboard that do not translate into individual ASCII codes.
 Fortunately the JNIOR utilizes only a few special keys. With VT-100 emulation
 these keys are automatically translated into an escape sequence. The custom
 terminal emulator must enable these translations. The following are used by
 the command line interface:

 Cursor Emulation, Positioning and Editing

 Up Arrow ESC[A
 Down Arrow ESC[B
 Right Arrow ESC[C
 Left Arrow ESC[D
 Home Key ESC[1~
 End Key ESC[4~
 Page Up Key ESC[5~
 Page Down Key ESC[6~
 Ins Key ESC[2~

 Note that the Backspace Key is assumed to translate to an ASCII 0x08. The
 Delete Key (Del) should translate to an ASCII 0x7F (127) code. In terminal
 programs (e.g. PuTTY) this behavior can be customized.

 Page 293

CONTROL CODES
 Control codes are ASCII values between 0 and 0x1F (31 decimal) inclusive.
 They have various meanings. In particular the following are used by the JNIOR.

 Ctrl-A 0x01 (1 decimal)
 toggles anchor used in text selection [2]

 Ctrl-C 0x03 (3 decimal)
 cancels current actions, displays the banner, editor
 selection copy [2]

 Ctrl-H 0x08 (8 decimal)
 backspace - Backspace Key

 Ctrl-I 0x09 (9 decimal)
 tab toggles filename auto-fill [1], advances to tab
 stops in editing [2] - Tab Key

 Ctrl-M 0x0D (13 decimal)
 Carriage return Enter Key

 Ctrl-Q 0x11 (17 decimal)
 Exits editor [2]

 Ctrl-V 0x16 (22 decimal)
 Editor selection paste [2]

 Ctrl-X 0x18 (24 decimal)
 Editor selection cut [2]

 Ctrl-Y 0x19 (25 decimal)
 Editor Redo [2]

 Ctrl-Z 0x1A (26 decimal)
 Editor Undo [2]

 Ctrl-[0x1B (27 decimal)
 Editor Escape [2] - Esc Key

 [1] JNIOR Series 4 feature
 [2] JANOS v2 feature.

 Page 294

SCREEN EDITOR
 The JNIOR Series 3 and Series 4 with JANOS v1 operating code do not utilize
 escape sequences to manipulate displayed character data. The following are
 required by JANOS v2 specifically to support the the screen editor EDIT .
 Where shown the '#' is replaced by a numeric value represented by ASCII
 digits. This indicates the number of times that the action is to be repeated.
 If the decimal value is omitted it is assumed to be one (1).

 Move cursor Up ESC[#A
 Move cursor Down ESC[#B
 Move cursor Right ESC[#C
 Move cursor Left ESC[#D
 Erase from cursor to end of line ESC[K
 Format character normal ESC[0m
 Format character reverse video (selected) ESC[7m
 Disable Line Wrap ESC[?l

 Note that the UP and DOWN arrow movements move to the same column in the line
 above or below on the display respectively. If the destination line is shorter
 and does not extend to the target column the cursor is moved to the after the
 last position on the new line. A RIGHT arrow is ignored once the cursor reaches
 the end of the line. A LEFT arrow is ignored if the cursor is positioned at
 the beginning of the line. In other words there is no wrap. The logic for this
 is handled by JANOS. So if your terminal emulation handles movements
 differently the result should still be as described here.

 The Disable Line Wrap escape sequence is sent when the screen editor is
 started. Lines that wrap would cause confusion with page oriented editing.
 This wrapping feature is to be disabled. The character formatting is used in
 highlighting characters when being selected for Copy, Cut and Paste operations.
 The editor cannot detect the state of the Shift key and relies on dropping
 the Ctrl-A anchor to start highlighting. Characters are then highlighted as
 the cursor is moved. Terminal emulation that does not support the formatting
 of individual characters (e.g. HTML textarea) can accomplish the selection
 highlighting by some other means. The formatting escape sequences should be
 ignored in that case. The cursor movement and line erasure escape sequences
 are critical in enabling a functional screen oriented editor.

 Page 295

JBakup Log Archiving Service

DESCRIPTION
 The JBakup service accumulates system LOG file data as it ages. Periodically
 new .LOG.BAK file content is concatenated to any existing LOG.BAK data
 located in the LOG.ZIP from the /flash/baks folder. The ZIP is updated.

 These accumulations are limited in size but generally cover a long period
 of time.

NOTES
 System LOG files age to a corresponding LOG.BAK file when they reach a
 maximum size (currently 64KB). JBakup generally sleeps and awakes on the
 quarter hour to look for new LOG.BAK files. These have a date newer than
 the related LOG.ZIP file located in the flash/baks folder. When found a
 new LOG.BAK file is appended to the content of the ZIP.

SEE ALSO
 HELP Topics: LOGS, ZIP

 Page 296

FtpClient User Commands

NAME
 ftp

SYNOPSIS
 ftp [OPTIONS] [SERVER]

DESCRIPTION
 Files can be transferred on and off of a JNIOR using the File Transfer
 Protocol (FTP). This typically is performed by a program on a remote
 computer which works with the JANOS built-in FTP Server. This application
 allows you to work from the JNIOR Command Line with a remote FTP Server.
 With this tool you can transfer files to and from a remote machine.

 The FTP Client has two modes of operation. In an interactive mode you can
 query available remote files and make transfers as needed. From the
 command line you can specify a command file which allows the FTP Client
 to perform transfers without intervention.

 SERVER

 If specified the FTP Client will establish the connection with the remote
 FTP Server. The format is as follows:

 username:password@server

 Where 'server' may be given as an IP address or a Domain name. If
 'password' is omitted it will be securely requested. If 'username' is
 omitted both the username and password will be requested. You can use the
 OPEN command in the interactive session to specify the server.

 OPTIONS

 -P
 Use secure connections.

 -V
 Verbose mode. The progress of any transfer will be displayed with
 additional detail.

 -C FILE
 Specifies a command file which will be used instead of the interactive
 session.

 -H
 Or any faulty option will display the legacy built-in Help text for the
 command.

NOTES
 This application program was written as a command line extension and
 operates as if it were a built-in command.

SEE ALSO
 HELP Topics: FTP_COMMANDS

 Page 297

FTP Client Interactive Mode

COMMANDS
 help (or ?)
 Displays legacy help information.

 open SERVER
 If SERVER is not specified by the command line this can be used to start
 a session with the remove FTP server. The format is as follows:

 username:password@server

 Where 'server' may be given as an IP address or a Domain name. If
 'password' is omitted it will be securely requested. If 'username' is
 omitted both the username and password will be requested.

 close
 Disconnects from the remote FTP server. The OPEN command can then be
 used to establish a new connection.

 ascii
 Operate in ASCII data mode.

 binary
 Operate in BINARY data mode (Default).

 passive
 Operate in passive mode. Data is transferred by a separate data
 connection. In this mode the JNIOR waits for the remote FTP Server
 to establish the connection.

 active
 Operate in active mode (Default). In this mode when data is to be
 transferred the JNIOR works to establish a separate data connection
 with the remote FTP Server.

 secure
 Use secure data communications.

 plain
 Data is transferred in the clear. This is the default.

 dir (or ls)
 List files available in the remote directory.

 cd DIR
 Change the remote working directory to DIR.

 pwd
 Display the current remote directory.

 get REMFILE LOCFILE
 Copy the remote file REMFILE to the JNIOR as LOCFILE.

 Page 298

 put LOCFILE REMFILE
 Copy the local file LOCFILE to the remote server as REMFILE.

 delete FILE
 Remove the file FILE from the remote server.

 mkdir DIR
 Create the directory DIR on the remote server.

 rmdir DIR
 Remove the directory DIR from the remote server.

 cat FILE
 Requests the remote FILE and displays the content.

 verbode
 Show progress and additional status.

 bye, exit, quite
 End Session. Either will exit the interactive session and close the
 connection with the remote server.

SEE ALSO
 HELP Topics: FTPCLIENT

 Page 299

 INDEX

$BootTime, 107 bin2hex(), 256
$BuildTag, 108 BLOCK_EMAIL, 142
$HdwStrapping, 108 bye, 35
$HOURMETER, 172, 186
$LastNtpSuccess, 108 -- C --
$Model, 107 CAT, 56, 32, 53, 268, 282, 292
$SerialNumber, 107 cd, 33
$Version, 107 Certificate
/WebServer/ Common Name, 132
 Path, 153, 243 Contact Email, 133
 Root, 153 Country, 130
410, 269 Expiration, 134
412, 269 Locality, 131
412DMX, 269 Organization, 131
414, 269 Organizational Unit, 132
 SHA1 Use, 134
-- A -- State, 131
ALARMING, 173, 138-139, 179-180 Subject Alternate Name, 133
app, 67 certificates, 130
applications, 239 certmgr, 93, 125, 129-134, 146
arc, 52, 241 CHDIR, 33
archive, 52 chdir(), 260
ARP, 96, 17, 39 CHGRP, 88, 44, 55, 87
array_remove(), 257 CHMOD, 54, 44, 150
ASCII, 290, 57, 78, 92, 195, 199 CHOWN, 55, 44
Auth_Digest, 238 CKSUMS, 266, 21, 69-71, 244, 253
Authentication, 126 COM, 273, 163, 192
AUX, 274, 192 com.integpg.comm.COMSerialPort
AUX_FLOW, 195, 196 Class, 197
AUX_PORT, 274, 193-196, 273 COM_FLOW, 199, 198
AUX_RS485, 196, 195 COM_PORT, 273, 196-199, 275
AUX_serial, 193 COM_SERIAL, 196, 11
AUX_settings, 194 COM_setting, 197
AUXSerial/ comment, 70
 Baudrate, 194 COMPILING, 240
 Databits, 194 Compression, 200, 201
 Flow, 195 COMSerial/
 Parity, 194 Baudrate, 197
 RS485, 196 BootDialog, 197
 Stopbits, 194 Databits, 197
AUXSerialPort Class, 275 Flow, 199
 Parity, 197
-- B -- Stopbits, 197
base64_decode(), 257 COMSerialPort.setBootDialog()
base64_encode(), 257 Method, 197
BATCH, 43, 59, 64, 69, 284 conditioning, 175, 179
BEACON, 164, 11 configuration, 105
Beacon/ console, 163
 Announce, 164 control, 212
 AutoAnnounce, 165, 164 copy, 48, 49
 Enabled, 164, 165 count(), 256

 INDEX (cont'd)

count trigger, 183 endsWith(), 256
counting, 173, 181-184 ENVIRONMENT, 283, 70
counts, 173 ereg(), 262
cp, 48 ereg_replace(), 263
crc(), 256 eregi(), 262
 eregi_replace(), 263
-- D -- errors, 264
DATE, 36, 17, 39, 108-109, 116, 281 etc, 277
date(), 258 etc/
debounce, 169, 170, 176 JanosClasses.jar, 277
DEFAULT_ACCOUNTS, 127, 83-87, events, 135

126-128 Events/
del, 47 OnAlarm, 138, 139, 173
delete, 47 OnAlarm1, 138
Device/ OnAlarm2, 138, 173
 Desc, 109 OnBoot, 135
 ResetAction, 109 OnConfig, 139
 Timezone, 109 OnUsage, 139, 138, 173
Devices, 234 Services, 135
DHCP, 110 Events/OnBoot/
diagnostic_port, 196 Email, 136, 135
DIN, 166, 172-180 EmailBlock, 137
DIR, 45, 21, 50-51, 66, 100 RunEnable, 137
docs, 278 Events/OnConfig/
doubleval(), 257 Email, 139
 EmailBlock, 140
-- E -- EventsOnAlarm1, 173
echo, 71, 268 EXEC, 68, 32
ed, 60 exit, 35, 65
edit, 60 expansion_bus, 276
editor, 60 extern, 77
EGREP, 58, 32, 289
Email/ -- F --
 Attachments, 143 factory, 18
 BccAddress, 141 factory_reset, 22, 25
 CcAddress, 141, 140 fclose(), 259
 HTML, 144, 143 feof(), 259
 Message, 142, 143 file_crc(), 260
 MessageFile, 143, 142 file_exists(), 259
 Port, 145, 146 file_md4(), 260
 RetryCount, 147, 148 file_md5(), 260
 RetryDelay, 147 file_sha1(), 260
 Signature, 148 file_sha2(), 260
 SMTPS, 146, 145 filemtime(), 259
 StartTLS, 146, 145 files, 44, 55, 87-88, 155
 Subject, 142, 141 filesize(), 259
 ToAddress, 140, 144 FILTER, 284, 92, 287
EMAIL_BLOCK, 140, 137, 141-144, FILTERING, 284, 120-122, 125

147-148, 180 find, 58
empty(), 261 FLASH, 277, 18
endian(), 257

 INDEX (cont'd)

flash/ inversion, 168, 175, 179
 ftp.jar, 297 IO/
 JBakup.jar, 296 Inputs, 166
floatval(), 257 Outputs, 187
flush(), 262 IO/Inputs/
fopen(), 259 Log, 172, 171, 177
formalities, 1 IO/Inputs/[DIN]/
fread(), 259 $HourMeter, 178
FTP, 297, 65 Alarming, 179
ftp.jar, 297 Conditioning, 175, 168
FTP/ CountState, 181
 Port, 161 Debounce, 176, 169, 175
 Server, 161, 162 Desc, 174, 167
 UnixStyle, 162, 161 Inversion, 175, 168
FTP_COMMANDS, 298, 297 Latching, 176, 170
FTPCLIENT, 297, 161-162, 241, 299 LatchState, 177, 176
functions, 252 LatchTime, 177, 176
fwrite(), 259 Log, 177, 172
 OffDesc, 174
-- G -- OnDesc, 174
gc, 75 UsageState, 185
getcwd(), 260 IO/Inputs/[DIN]/Alarm/
getRegistryBoolean(), 262 Email, 180, 179
getRegistryList(), 262 EmailBlock, 180
getRegistryString(), 261 HoldOff, 180
Getting_Started, 9 Inversion, 179
getutc(), 258 IO/Inputs/[DIN]/Alarm[N]/
gmtime(), 258 Email, 184
GREP, 58, 32-34, 57, 289 EmailBlock, 184
GROUPADD, 87, 88 HoldOff, 184
GROUPDEL, 88, 87 OnAlarm, 184
GROUPS, 87, 44-46, 55, 83, 88 IO/Inputs/[DIN]/Count/
 Alarm[N], 183
-- H -- Limit[N], 183
head, 56 Multiplier, 182, 181
header(), 254 SampleTime, 182
help, 6, 7-8, 25, 29, 278 Units, 181, 182
hex2bin(), 256 IO/Inputs/[DIN]/Usage/
HIST, 34, 29, 289 Alarm, 185
HISTORY, 34, 29 Email, 185
HOSTNAME, 40, 33, 65, 97, 113, EmailBlock, 185

123-124, 134 HoldOff, 185
HourMeter, 178, 188 Limit, 185
 OnAlarm, 185
-- I -- IO/Outputs/
including, 263 Log, 191
INI, 43 IO/Outputs/[ROUT]/
initial_files, 19 $HourMeter, 188
INITIALIZE, 206, 205, 209 ClosedDesc, 187
INPUTS, 272, 167-169, 175, 269-271 Desc, 187
intval(), 257 InitialState, 188

 INDEX (cont'd)

 Log, 191 is_file(), 259
 OpenDesc, 187 is_int(), 261
 UsageState, 189 is_null(), 261
IO/Outputs/[ROUT]/Usage/ is_string(), 261
 Alarm, 189 isset(), 261
 Email, 189
 EmailBlock, 189 -- J --
 HoldOff, 189 JanosClasses.jar, 277, 240-241
 Limit, 189 jar, 52, 241
 OnAlarm, 189 java, 67, 73, 239-241, 277
iolog, 78, 81, 171-172, 177, JBAKUP, 296, 53, 57, 197, 241

191-192, 196, 273 JBakup.jar, 296
IPADDRESS, 111 JMP, 202, 154-158, 173, 178, 188,
IPCONFIG, 38, 11, 17, 63, 96-97, 204

110-112 Block Command, 213
IpConfig/ Close Command, 212
 Allow, 125 Console
 CaptureBuffer, 120 Close, 230
 CaptureFilter, 122 Open, 228
 DHCP, 110 Stdin, 229
 DNSTimeout, 115 Stdout, 229
 Domain, 113 Digest Calculation, 206
 EmailAddress, 115, 133, 136, 140 Enumerate Devices, 232
 GatewayIP, 111 Expansion Modules, 234
 HostName, 113, 40 File
 IPAddress, 110 List, 216
 LLMNR, 123 Mkdir, 222
 MailHost, 114, 136 Read, 217
 MTU, 117 Remove, 220
 NetBIOS, 124 Rename, 221
 NTPServer, 115 Write, 219
 NTPUpdate, 116 Initial Connection, 206
 Password, 114 Message Structure, 208
 PrimaryDNS, 112 Meta Data, 209
 Promiscuous, 121 Montor Message, 210
 SecondaryDNS, 112 Open Command, 213
 ShowPass, 123 Port Connection, 202
 SubnetMask, 111 Read Devices, 233
 SyslogServer, 118 Registry
 TTL, 117 List, 223
 Username, 114 Read, 225
IpConfig/Keepalive/ Update, 223
 Interval, 119 Write, 226
 Retry, 119 Write Encrypted, 227
 Time, 119 Reset Counter, 214
IpConfig/Socket/ Reset Latch, 214
 ConnectTimeout, 120 Reset Usage, 215
is_array(), 261 Secure Connection, 205
is_bool(), 261 Status Request, 211
is_dir(), 260 Toggle Command, 212
is_double(), 261 Websocket Connection, 202

 INDEX (cont'd)

 Write, 234 -- M --
JMP_Console, 228 man, 6
JMP_Externals, 232 MANIFEST, 99, 21, 57, 292
JMP_file, 216 MANUAL, 278, 6-8
JMP_Logging, 237 MD, 50, 33
JMP_Registry, 223 md4(), 256
JMP_RTC, 236 md5(), 256
JMP_Shutdown, 236 memory leak, 75
JMPCONNECT, 202, 205-209 MESSAGING, 208, 207
JMPServer/ metering, 172, 178
 Anonymous, 157, 156 MKDIR, 50, 33, 51
 Login, 156, 157 mkdir(), 260
 Port, 156 mode, 82, 192, 196-197
 Server, 156 MODELS, 269, 167, 192, 270-276
JniorServer/ monitor, 210
 Anonymous, 159, 158 MORSE_CODE, 291, 11
 Login, 158, 159 MOVE, 49, 48-50
 Port, 158 mv, 49
 RemoteIP, 160, 159
 RemotePort, 160 -- N --
 Server, 158 nbtstat, 97, 123-124
JPROTOCOL, 292, 158-160, 173, 178, NETSTAT, 89, 27, 78, 120-122, 277,

188 287
JRFLASH, 104, 98, 277 NETWORK, 89, 11
JRMON, 79, 78, 171-173, 177-178, network scanner, 90

183, 186 network_access, 10, 292
JRUPDATE, 101, 18, 98, 277 network_basics, 12
JSON, 292, 57, 100, 202-204 NSLOOKUP, 97, 17, 39
json_decode(), 260 NTP, 17
json_encode(), 261 nv, 75
json_load(), 261
json_save(), 261 -- P --
JVM, 239, 53, 241, 277 PASSWD, 84, 25, 127
 password, 84
-- K -- permissions, 44, 46, 55
KEYBOARD, 9 phome, 103
keys, 41 PHP, 69
KILL, 74, 72-73, 137 PHP Script
 Array Functions, 256
-- L -- Conversions, 257
LATCHING, 170, 169, 177-179 Date & Time, 258
library, 254 File Functions, 259
Licensing, 2 JSON Functions, 260
locators, 153 Language Functions, 261
LOGGER, 64, 39, 118 Output Functions, 254
logging, 171, 172, 177 Registry Functions, 261
LOGS, 281, 136, 143, 296 Regular Expressions, 262
LS, 45, 44, 50-51, 55, 66, 100 String Functions, 255
ltrim(), 255 System Functions, 262
 PING, 95, 32, 39, 59
 piping, 30

 INDEX (cont'd)

plain_text, 26 serial_ports, 274
POWER_SUPPLY, 270, 9 set, 70
print(), 254 setenv, 70, 284
printf(), 254 setRegistryString(), 262
processes, 72 settings, 41
program, 67 sha1(), 256
PROGRAMMING, 239, 67, 240, 277 sha2(), 256
PROMPT, 33, 29, 34 sleep(), 262
PS, 72, 67, 73-74, 137 sniffer, 90
puts(), 254 split(), 262
PWR, 270, 9, 269 spliti(), 262
 sprintf(), 256
-- Q -- SSL/
quit, 35 Enabled, 125, 146
 Required, 126
-- R -- SSL/Cert/
rd, 51 C, 130
REBOOT, 98, 23 CN, 132, 133
reclaim, 104 Days, 134, 133
RefPoint, 99 E, 133
REG, 41, 23, 29, 105-106, 167, 289 L, 131
REGEX, 288, 32-34, 59 O, 131
REGISTRY, 105, 21 OU, 132, 131
Registry_use, 106 SAN, 133
RELAYS, 271, 269, 272 SHA1, 134
rem, 70 ST, 131, 130
remark, 70 startsWith(), 256
remove, 47 STATEMENTS, 250, 249
ren, 50 stats, 98
RENAME, 50, 49 status, 211
rm, 47 strcmp(), 256
RMDIR, 51, 49-50 stripos(), 255
rmdir(), 260 strlen(), 255
ROUT, 187 strpos(), 255
rsa_keys, 129, 130 strripos(), 255
rtrim(), 255 strrpos(), 255
run, 68, 244-246, 268 strtolower(), 255
running, 72 strtoupper(), 255
 strval(), 255
-- S -- subnet mask, 38
SAFEMODE, 287, 25, 83-84, 125, 128, SubnetMask, 111

137 substr(), 255
scandir(), 260 SUPPORT, 8, 6, 103, 278
scanner, 90 syslog(), 262
SCRIPT, 245, 71, 244, 249-253, 263
SCRIPTING, 244, 64, 69, 246 -- T --
security, 205, 204, 207 tab, 28, 33-34, 43, 102
SENDMAIL, 62, 39, 114-115, 136 TAIL, 56, 32-34
sensor_port, 276 telnet, 65
serial, 192 Telnet/
serial_access, 10 Port, 163

 INDEX (cont'd)

 Server, 163
TEMP, 277, 18 -- W --
THD, 73, 67, 72-74 Warranty, 3
threads, 73 WEBSERVER, 242, 53, 243-244
time(), 258 WebServer/
timezones, 278 Anonymous, 150
touch, 66 Index, 151
trigger point, 183 Locator, 153
trim(), 255 Login, 150, 151
type, 56 Path, 152, 151
 Port, 149
-- U -- Public, 153
ucfirst(), 255 Root, 151, 149
ucwords(), 255 Server, 149, 242
unlink(), 259 SSLPort, 149
unpack(), 257 website, 242
uptime, 98 websocket, 154, 155, 242
urldecode(), 257 Websocket/
urlencode(), 257 Anonymous, 154
usage, 172 Console, 155
USER, 86 Files, 155
USERADD, 86, 25, 83, 87 Login, 154, 155
USERDEL, 87, 25, 83, 86, 127 WEBUI, 243, 106, 242
USERMOD, 85, 25, 83, 86, 127 WebUI_Help, 7
USERS, 83, 25, 44-46, 55, 85-87, WHOAMI, 89, 25

127, 150
Users/ -- Y --
 IgnoreDefault, 128 yield(), 262
USERS_MANUAL, 278, 7

-- Z --
-- V -- zip, 52, 151-152, 200-201, 242, 296
var_dump(), 254 Zip/
VARIABLES, 247, 246, 251-253 Depth, 200
virtual folders, 56 Window, 200
VT100, 293

